

Adaptrade Builder

Version 3

User's Guide

Copyright © 2010 - 2020 Adaptrade Software
www.Adaptrade.com

Disclaimer

HYPOTHETICAL OR SIMULATED PERFORMANCE RESULTS HAVE CERTAIN

INHERENT LIMITATIONS. UNLIKE AN ACTUAL PERFORMANCE RECORD,

SIMULATED RESULTS DO NOT REPRESENT ACTUAL TRADING. ALSO, SINCE THE

TRADES HAVE NOT ACTUALLY BEEN EXECUTED, THE RESULTS MAY HAVE

UNDER- OR OVER-COMPENSATED FOR THE IMPACT, IF ANY, OF CERTAIN

MARKET FACTORS, SUCH AS LACK OF LIQUIDITY. SIMULATED TRADING

PROGRAMS IN GENERAL ARE ALSO SUBJECT TO THE FACT THAT THEY ARE

DESIGNED WITH THE BENEFIT OF HINDSIGHT. NO REPRESENTATION IS BEING

MADE THAT ANY ACCOUNT WILL OR IS LIKELY TO ACHIEVE PROFITS OR

LOSSES SIMILAR TO THOSE SHOWN.

iii

EasyLanguage and TradeStation are registered trademarks of TradeStation Technologies,

Inc.

Last Revision: November 2020 (version 3.2.0)

Copyright © 2010 – 2020 Adaptrade Software

www.Adaptrade.com

iv

Software License Agreement

These license terms are an agreement between Adaptrade Software and you. Please read them. They apply to the software named

above, which includes the media on which you received it, if any. The terms also apply to any

• updates,

• supplements, including EasyLanguage code files for TradeStation, and

• support services

for this software provided by Adaptrade Software, unless other terms accompany those items. If so, those terms apply.

BY CLICKING ON THE "I AGREE" BUTTON WHERE INDICATED, OR BY COPYING, INSTALLING OR OTHERWISE

USING THE SOFTWARE, YOU ACCEPT THESE TERMS. IF YOU DO NOT AGREE TO THE TERMS OF THIS

AGREEMENT, DO NOT INSTALL OR USE THE PROGRAM AND DESTROY ALL COPIES OF IT.

If you comply with these license terms, you have the rights below.

1. LICENSE MODEL. The software is licensed on a per user basis.

2. INSTALLATION AND USE RIGHTS. You may install any number of copies of the software on your devices, provided it is

for your use only. A "single user" license permits the use of the software on no more than one device at a time. A "two-user"

license permits the software to be run on two devices at the same time, and so on.

3. SCOPE OF LICENSE. The software is licensed, not sold. This agreement only gives you some rights to use the software.

Adaptrade Software reserves all other rights. Unless applicable law gives you more rights despite this limitation, you may use

the software only as expressly permitted in this agreement. You may not

• reverse engineer, decompile or disassemble the software, except and only to the extent that applicable law expressly

permits, despite this limitation;

• make more copies of the software than specified in this agreement or allowed by applicable law, despite this limitation;

• publish the software for others to copy;

• rent, lease or lend the software;

4. BACKUP COPY. You may make backup copies of the software. You may use these copies only to reinstall the software.

5. EXPORT RESTRICTIONS. The software is subject to United States export laws and regulations. You must comply with all

domestic and international export laws and regulations that apply to the software. These laws include restrictions on

destinations, end users and end use.

6. SUPPORT SERVICES. Support services are as described on the Adaptrade Software web site, www.Adaptrade.com.

7. ENTIRE AGREEMENT. This agreement, and the terms for supplements, updates and support services that you use, are the

entire agreement for the software and support services.

8. APPLICABLE LAW.

a. United States. If you acquired the software in the United States, California state law governs the interpretation of

this agreement and applies to claims for breach of it, regardless of conflict of laws principles. The laws of the state

where you live govern all other claims, including claims under state consumer protection laws, unfair competition

laws, and in tort.

b. Outside the United States. If you acquired the software in any other country, the laws of that country apply.

9. LEGAL EFFECT. This agreement describes certain legal rights. You may have other rights under the laws of your country.

You may also have rights with respect to the party from whom you acquired the software. This agreement does not change

your rights under the laws of your country if the laws of your country do not permit it to do so.

10. DISCLAIMER OF WARRANTY. THE SOFTWARE IS LICENSED “AS-IS.” YOU BEAR THE RISK OF USING IT.

ADAPTRADE SOFTWARE GIVES NO EXPRESS WARRANTIES, GUARANTEES OR CONDITIONS. YOU MAY

HAVE ADDITIONAL CONSUMER RIGHTS UNDER YOUR LOCAL LAWS WHICH THIS AGREEMENT CANNOT

CHANGE. TO THE EXTENT PERMITTED UNDER YOUR LOCAL LAWS, ADAPTRADE SOFTWARE EXCLUDES

THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-

INFRINGEMENT.

11. LIMITATION ON AND EXCLUSION OF REMEDIES AND DAMAGES. YOU CAN RECOVER FROM ADAPTRADE

SOFTWARE ONLY DIRECT DAMAGES UP TO THE AMOUNT PAID FOR THE SOFTWARE. YOU CANNOT

RECOVER ANY OTHER DAMAGES, INCLUDING CONSEQUENTIAL, LOST PROFITS, SPECIAL, INDIRECT OR

INCIDENTAL DAMAGES.

This limitation applies to

a. anything related to the software, services, content (including code) on third party Internet sites, or third party

programs; and

b. claims for breach of contract, breach of warranty, guarantee or condition, strict liability, negligence, or other tort to

the extent permitted by applicable law.

It also applies even if Adaptrade Software knew or should have known about the possibility of the damages. The above

limitation or exclusion may not apply to you because your country may not allow the exclusion or limitation of incidental,

consequential or other damages.

v

Table of Contents

Software License Agreement ...iv

Table of Contents .. v

Introduction ... 1

Overview .. 1

Genetic Programming .. 2
References ... 4

Build Algorithm .. 4

Entry and Exit Conditions .. 5

Order Types .. 8

Neural Networks ... 12

Trading Strategy Structure ... 14

Example .. 15

Getting Started .. 21

Installation ... 21

Program Layout and Configuration ... 23

Working with Project Files... 25

Quick Start Steps .. 26

Symbols and Settings .. 36

Symbol Library ... 36
Obtaining Price Data ... 37
Equity Curve Symbols ... 38
Adding a Symbol ... 39
Custom Indicators .. 43
Symbol Settings ... 45

Build and Evaluation Symbols ... 49

Price Charts ... 55

Creating and Using Price Charts ... 55

Trading Orders ... 58

Build Settings ... 60

GP (Genetic Programming) Settings.. 60

Build Metrics .. 63

Stress Testing ... 67

Indicators and Order Types ... 68

Strategy Logic Options ... 69

Neural Network Settings ... 71

Parameter Ranges .. 71

Evaluation Options ... 73

Position Sizing Settings .. 76

Build Results .. 80

vi

Build Progress Window .. 80

Messages Window .. 81

Build Results Tables ... 82

Performance Report Window ... 83

Build Report Window ... 84

Strategy Code Window ... 85

Equity Curve Window ... 87
Closed-Trade Equity Curve ... 87
Detailed Equity Curve ... 87

Trade List Table ... 88

Usage Topics .. 90

Stress Testing and Monte Carlo Analysis ... 90

Ideal Trades ... 94

Out-of-Sample Performance... 98

Build Time .. 100

Post-Build Testing and Optimization ... 101

Common Questions .. 102

Tips and Hints .. 107

Ribbon Menu ... 109

File Menu ... 109
New Project Command .. 110
Open Project Command... 110
Close Project Command .. 110
Save Project Command ... 110
Save Project As Command .. 110
Save NinjaScript Strategy to File Command ... 111
Save MT4 Strategy to File Command ... 111
Save to MSA File Command ... 111
Properties Command ... 111
Options Command ... 112
Exit Command ... 112

Build Menu ... 112

Evaluation Menu .. 112

Position Sizing Menu .. 112

View Menu .. 112

Clipboard Menu ... 115

Ribbon Tab Buttons .. 116

Appendix: Performance Metrics ... 117

Appendix: Technical Indicators ... 126

Appendix: Code Conventions ... 132

Index ... 134

Chapter 1
Introduction

Overview
Adaptrade Builder is a stand-alone Windows program that automatically generates trading

strategies for several popular trading platforms, including TradeStation, MultiCharts,

NinjaTrader 7/8, MetaTrader 4, and AmiBroker. Builder synthesizes unique combinations of

trading indicators, trading rules, price patterns, entry and exit order types, and other user-

selectable options and generates the corresponding strategy code. The program can generate

an almost unlimited variety of trading strategies, including breakout, trend-following, stop-

and-reverse, end-of-day, day trading, and others. Builder can also generate neural network-

based strategies in which the elements of the network are chosen automatically. All strategies

created by Builder are designed around the user's specified performance requirements and

goals and can be as simple or as complex as desired.

In effect, Builder automates the traditional, manual approach to strategy development in

which the trader selected elements of a trading strategy based on prior experience combined

with knowledge of technical indicators, entry and exit order types, and strategy design. In

this traditional approach, a strategy was based on a market “hypothesis”; that is, an idea of

how the market works. A viable trading strategy was typically developed through a long

trial-and-error process involving numerous iterations, revisions, and testing until acceptable

results were achieved.

Figure 1.1. Main window of Adaptrade Builder.

Builder performs each step of the manual process automatically. The program generates an

initial population of trading strategies by "seeding" the population based on the user's

2

selected options. The initial population of strategies is then “evolved” over successive

generations using a genetic programming algorithm, guided by performance criteria selected

by the user. The program builds the strategies over the training or “in-sample” data segment

and tests each one over the test and validation (“out-of-sample”) segments. Each candidate

strategy is essentially a hypothesis that is either supported or refuted by the out-of-sample

testing. In addition, Builder includes a unique test of statistical significance that takes into

account the build process to test whether each member of the population overcomes the so-

called data mining bias.

The premise behind Builder is that developing a trading strategy is essentially a problem of

statistical inference. The price data can be thought of as a combination of “signal” and

“noise”. The signal is the tradable part of the data, and the noise is everything else. In this

context, the essential challenge is finding strategies that fit the signal while ignoring the

noise and avoiding over-fitting. At the same time, market data is often non-stationary: the

statistical properties change over time. A successful strategy is therefore one that fits the

stationary elements of the market signal with a suitable number of degrees-of-freedom to

avoid both under-fitting and over-fitting. Out-of-sample testing and the statistical

significance test of the build process are used to verify these requirements.

Builder is designed to generate strategies for almost any market and time frame, from tick

data to monthly bars, for stocks, futures, forex, ETFs, and other markets. The strategies

generated by Builder are complete trading strategies, including rules and trading orders for

entering the market, exiting at a profit, and exiting at a loss. The strategy code is provided in

open text file format, which can be copied to the trading platform for subsequent execution to

generate trading signals.

Some of the user options in Builder include the code type (e.g., current versions of

TradeStation/MultiCharts, TradeStation 2000i, NinjaTrader 7, NinjaTrader 8, MetaTrader 4,

AmiBroker); specifying strategies as long-only, short-only, or combined long and short

trading; requiring the long and short entry rules to be logical opposites; limiting entries and

exits to specified times; limiting the number of entries per day for day trading strategies;

including a neural network in the entry conditions; specifying one of several optional

position sizing methods to include in the strategy code; building using stress testing/Monte

Carlo analysis; excluding specific indicators, entry rules, and exit rules from the build

process; and specifying various aspects of the genetic programming process as well as other

features to be included or excluded from the generated strategies.

Builder can also be used as a stand-alone trading platform for end-of-day trading. The

program includes price charting, which displays the trade entry and exit points on the chart.

A Trading Orders window displays the current open position(s) and any pending orders for

the next bar. Used in conjunction with the data provider and brokerage of your choice, the

generated strategies can be evaluated day-to-day in Builder and the orders sent manually to

your broker for execution.

Genetic Programming
Builder uses a technique called genetic programming (GP),1 which belongs to a class of

machine learning algorithms called evolutionary algorithms. Evolutionary algorithms and GP

in particular were developed by researchers in artificial intelligence based on the biological

concepts of reproduction and evolution. A GP algorithm “evolves” a population of trading

strategies from an initial population of randomly generated members. Members of the

population compete against each other based on their “fitness.” The fitter members are

selected as “parents” to produce a new member of the population, which replaces a weaker

(less fit) member.

3

Two parents are combined using a technique called crossover, which mimics genetic

crossover in biological reproduction. In crossover, part of one parent’s genome is combined

with part of the other parent’s genome to produce the child genome. In Builder, genomes

represent the trading rules and order logic of the strategy. Other members of the population

are produced via mutation, in which one member of the population is selected to be modified

by randomly changing parts of its genome.

Over successive generations of reproduction, the overall fitness of the population tends to

increase. The process is stopped after some number of generations or when the fitness stops

increasing. The solution is generally taken as the fittest member of the resulting population,

although any member of the final population may be selected.

The initial GP population might have as few as 50 members or as many as 1000 or more. A

typical build process might progress over anywhere from 10 to 100 generations or more.

The number of strategies constructed and evaluated during the build process is equal to the

size of the population multiplied by the number of generations.

In the context of building trading strategies, GP enables the synthesis of strategies given only

a high level set of performance goals. The GP process does the rest. This approach has

several significant benefits, including:

• The universe of possible trading rules and strategy logic is much larger than the universe

of performance results. Therefore, it's easier to specify the desired results and let the

computer find the rules and logic than to specify the rules and logic and hope to get the

desired results.

• The GP process reduces the need for knowledge of technical indicators and strategy

design. The GP algorithm selects the individual trading rules, indicators, and other

elements of the strategy for you.

• The rule construction process allows for considerable complexity, including nonlinear

trading rules.

• The GP process eliminates the most labor intensive and tedious elements of the

traditional strategy development process; namely, coming up with a new trading idea,

programming it, verifying the code, testing the strategy, modifying the code, and

repeating. This is all done automatically in GP.

• The GP process is unbiased. Whereas most traders have developed biases for or against

specific indicators and/or trading logic, GP is guided only by what works.

• By incorporating proper trading rule semantics, the GP process in Builder is designed to

produce logically correct trading rules and error-free code.

• The GP process often produces results that are not only unique but non-obvious. In

many cases, these hidden gems would be nearly impossible to find any other way.

• By automating the build process, the time required to develop a viable strategy can be

reduced from weeks or months to a few days in some cases, depending on the length of

the input price data file and other build settings.

Genetic programming has been successfully used in a variety of fields, including signal and

image processing, process control, bioinformatics, data modeling, programming code

generation, computer games, and economic modeling; see, for example Poli et al.2 An

overview of using GP in finance is provided by Chen.3 Colin4 was one of the first to explain

how to use GP for optimizing combinations of rules for a trading strategy.

Various academic studies have demonstrated the benefits of GP in trading. For example,

Karjalainen5 found that price pattern trading rules evolved using GP for S&P 500 futures

4

provided an advantage over buy-and-hold returns in out-of-sample testing. Similarly, Potvin

et al.6 found that rules generated through a GP process for individual stocks outperformed

buy-and-hold in out-of-sample testing during falling and sideways markets. Kaucic7

combined a genetic algorithm with other learning methods to generate simple trading rules

for the S&P 500 index and found positive results compared to buy-and-hold on out-of-

sample testing.

Until recently, most applications of genetic programming to trading strategy generation have

been academic studies based on limited rule sets, overly simple entry and exit logic, and

custom-written code, making the results unsuitable for most traders. At the same time, most

available software that implements GP for market trading has either been targeted to

professional traders and priced accordingly or is very complicated to set up and use.

Adaptrade Builder was designed to make GP simple to use for any trader, individual or

professional, who has a basic understanding of strategy trading and is familiar with one of

the supported trading platforms.

References

1. J. Koza. Genetic Programming. The MIT Press, Cambridge, MA. 1992.

2. R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic programming.

Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk,

2008. (With contributions from J. R. Koza).

3. Shu-Heng Chen (Editor). Genetic Algorithms and Genetic Programming in

Computational Finance. Kluwer Academic Publishers, Norwell, MA. 2002.

4. A. Colin. Genetic algorithms for financial modeling, Trading on the Edge. 1994, Pages

165-168. John Wiley & Sons, Inc. New York.

5. Risto Karjalainen. Evolving technical trading rules for S&P 500 futures, Advanced

Trading Rules, 2002, Pages 345-366. Elsevier Science, Oxford, UK.

6. Jean-Yves Potvin, Patrick Soriano, Maxime Vallee. Generating trading rules on the

stock markets with genetic programming. Computers & Operations Research, Volume

31, Issue 7, June 2004, Pages 1033-1047.

7. Massimiliano Kaucic. Investment using evolutionary learning methods and technical

rules. European Journal of Operational Research, Volume 207, Issue 3, 16 December

2010, Pages 1717-1727.

Build Algorithm
The build algorithm used in Adaptrade Builder is illustrated below. The gray-shaded boxes

represent the input data, which includes the price data for the markets of interest, the

indicators and order types in the so-called build set, and the options and performance criteria

(build goals) selected by the user.

The algorithm starts with the Strategy Generation step. An initial population of trading

strategies is randomly developed from the available technical indicators and rule types in the

build set. Any options that the user has selected, such as exiting all positions at end-of-day,

are applied at this point. Each strategy is then evaluated over the price data for the selected

markets, and a fitness value is assigned based on a weighted average of the build goals

specified by the user. For example, you might select net profit and drawdown as the two

5

performance metrics and weight each one equally. The fitness would then be the average of

the net profit and drawdown.

To generate new members of the population, members of the current population are selected

at random, and the fitter ones are chosen as parents for crossover and mutation. A less fit

member is selected at random to be replaced by the new member. The process is repeated

until as many new members have been created as there are members in the current

population. This step represents one generation.

Figure 1.2. Build algorithm in Adaptrade Builder.

If the user has selected one of the build failure rules, the results on the test segment are

checked after the specified number of generations. If the results are not above the threshold

chosen by the user, the process is reset, which causes the population to be re-initialized and

the generation count to be reset to zero. After the specified number of generations has been

successfully completed or the build termination conditions have been met, the strategies

("Final Strategies") are evaluated on the validation segment and the results are listed in the

Build Results table in order of fitness.

Entry and Exit Conditions
The GP process evolves three essential strategy elements simultaneously: entry conditions,

exit conditions, and orders for entry and exit. Optionally, a neural network can be evolved as

well; see Neural Networks, below. The entry and exit conditions are represented as tree

structures, as shown below in Fig. 1.3.

6

Figure 1.3. Entry condition example showing tree structure ((Highest(C, 20) < Average(H, 23) or
AbsValue(Momentum(L, 30)) >= H[6] - L) and SlowD(14) > FastK(5)).

The tree structure enables the generation of entry and exit conditions with considerable

complexity. Each node in the tree has between zero and three inputs, each of which leads to

further branching. The tree is constructed recursively starting at the top with a logical

operator (and, or, >, <, etc.) and proceeding to technical indicator functions, prices, and

constants, such as indicator lengths. Each branch is terminated with a node that has no inputs.

Available indicators in Builder are listed in Table 1, below. These are described in detail in

the appendix.

Note: As shown in Table 1 (see footnotes), not all indicators are available for all code types

(scripting languages). For example, if the MetaTrader 4 code type is selected on the

Evaluation Options tab prior to building, some indicators will be excluded from the build set

and will not be included in the strategies. If a strategy previously built for

TradeStation/MultiCharts includes one or more of these indicators and is then re-evaluated

when the MetaTrader 4 code type has been selected, the resulting code will be invalid and

will not compile in MetaTrader. Also, some indicators generate different values in different

platforms, and Builder has been designed to duplicate these differences depending on the

selected code type. For this reason, a strategy may produce different results if evaluated

under a different code type than was selected for building the strategy.

The EasyLanguage code corresponding to the tree structure shown in Fig. 1.3 is listed below.

VarL1 = Highest(C, 20);

VarL2 = Average(H, 23);

VarL3 = Momentum(L, 30);

VarL4 = AbsValue(VarL3);

VarL5 = H[6];

VarL6 = VarL5 – L;

VarL7 = SlowD(14);

VarL8 = FastK(5);

CondL1 = VarL1 < VarL2;

CondL2 = VarL4 >= VarL6;

CondL3 = CondL1 or CondL2;

CondL4 = VarL7 > VarL8

EntCondL = CondL3 and CondL4;

7

In this example, the long entry condition is given by the last statement, EntCondL.

The crossover operator of the GP process replaces a subtree in one parent with a subtree from

the other parent. For example, the subtree on the right of Fig. 1.3, starting with “>” (i.e.,

SlowD(14) > FastK(5)), might be replaced with a different subtree from another member of

the population. Each crossover operation produces two new trees as the subtrees from the

parents are exchanged.

There are six different mutation operators: point mutation, subtree mutation, subtree

simplification, subtree complication, subtree grow, and subtree prune. Point mutation

changes individual nodes in the tree. For example, the “Average” node might be replaced

with “Lowest” so that the subtree Average(H, 23) becomes Lowest(H, 23). Subtree mutation

replaces a subtree with a new, randomly generated one. Subtree simplification replaces a

subtree with a similar one that has fewer nodes. Subtree complication replaces a subtree with

a similar one that has more nodes. Subtree grow adds a new subtree to the existing tree, and

subtree prune removes a subtree from the tree.

Table 1. Available Indicators in Builder

Simple moving average

Exponential moving average

Weighted moving average

Triangular moving average1, 2

Adaptive variable moving average

Zero-lag trend

Adaptive zero-lag trend

Moving average convergence divergence (MACD)

Triple exponential moving average (TRIX) 1

Momentum

Rate of change (ROC) 1

Fast K stochastic1, 2

Fast D stochastic

Slow D stochastic

Relative strength indicator (RSI)

RocketRSI

Inverse Fisher RSI

Inverse Fisher cycle

Adaptive inverse Fisher RSI

Adaptive inverse Fisher cycle

Commodity channel index (CCI)

Directional indicator (DI+/DI-)

Directional movement index (DMI) 1, 2

Average directional index(ADX)

True range (TR)

Average true range (ATR)

Standard deviation

Ulcer index

Bollinger band

Keltner channel1, 2

Lowest

Highest

Volume

Accumulation/distribution

Chaiken oscillator1

Crosses above/below1

Price patterns (O, H, L, C, O[N], etc.)

Consecutive bars up/down

Congestion count

Typical price

Floor trader pivots

Day of week

Time of day

Absolute value
1Indicator not available for MetaTrader 4 code. 2Indicator not available for AmiBroker code.

An entry or exit condition is evolved separately for long and short trades unless the user

selects “Long only”, “Short only”, or “Long/Short Symmetry”. Each condition is a logical

statement; it evaluates to either true or false. A value of true means the condition is satisfied

for that market side (long or short), which is necessary for the order to be placed. Entry

conditions are applied to all types of entry orders. In other words, the entry condition must be

true for the entry order to be placed. Exit conditions only apply to market exit orders. If the

exit condition is true, the trade is exited at market on the next bar, assuming the strategy

includes the "market exit" order type.

8

In order to generate meaningful entry conditions, Builder applies both syntactic and semantic

rules when building the conditions. Syntactic rules ensure that each node containing a

function satisfies the input requirements for the function. For example, the Momentum

function requires a price as the first input and a length as the second input. Semantic rules

ensure that comparisons between different nodes are meaningful. For example, it makes

sense to compare the Highest(C, 20) to a moving average of price since both functions return

a price. However, it would not be meaningful to compare the closing price to the time of day

or to compare a stochastic, which has a value between 0 and 100, to a moving average of

price. The semantic rules enforce these requirements.

According to the semantic rules, indicators that return a price or volume-based value can be

used as input to indicators that take price or volume as an input. Examples of price-based

indicators include Average, XAverage, Highest, Lowest, ROC, RSI, Momentum, and

MACD. For example, Builder can produce conditions that include statements such as

Average(Highest(XAverage(C, N1), N2), N3). This is called indicator nesting. Currently,

nested indicators are not available for MetaTrader 4. Where available, nesting can be turned

off in order to reduce strategy complexity using an option on the Strategy Logic window.

If multiple data series are included in the build -- a new feature starting in version 2.5.0 -- the

semantic rules also ensure compatibility between the different series. For example, if the

primary series (the series on which trades are placed) is AAPL and a secondary series is

SPY, indicators can be applied to either symbol, but comparisons between the symbols are

prevented. However, comparisons are allowed between data series if they have the same

symbol but different timeframes, such as 30-minute bars of the E-mini S&P futures (ES) and

daily bars of the ES.

Order Types
Entry Orders

The following types of entry orders are available in Builder:

• Enter at Market

• Enter on Stop ($)

• Enter on Stop (%)

• Enter on Stop (Price)

• Enter at Limit ($)

• Enter at Limit (%)

• Enter at Limit (Price)

Entry orders are placed when the entry conditions, as described in the previous section, are

true. A market entry means the trade enters at the open of the next bar. Stop and limit entries

are placed at a specified price away from the market. Stop orders are intended to be placed

above the market for a long entry and below the market for a short entry. Limit orders are

intended to be placed below the market for a long entry and above the market for a short

entry.

The dollar-based stop and limit entries ($) use a fixed-size deviation from the current bar's

close based on a currency value (e.g., dollars for accounts denominated in dollars). The size

of the stop or limit value chosen by the program during building is based on the "Fixed Entry

Size, Stops/Limits" parameter range entered on the Parameter Ranges window. For example,

if the dollar range is from 100 to 750, the program may select any value within that range

during the build process. The selected value is divided by the point value for the symbol to

obtain the number of points. For example, a stop value of $500 means the entry price is

calculated to be $500 from the current bar's close per share/contract. For the E-mini S&P

9

futures, for example, this means the entry stop would be 10 points above the close for a long

trade because each point is worth $50 for the E-mini.

Percentage-based stop and limit entries (%) are set at a percentage of the current bar's close

above (below) the current bar's close for a long (short) trade. For example, if the close is 25,

a 5% limit entry would be placed 1.25 points below the close for a long trade. The

percentage value is chosen from the "Percentage Entry Size, Stops/Limits" parameter range

on the Parameter Ranges window.

Price-based stop and limit entry prices in Builder are calculated as follows:

EntryPrice = PriceValue +/- Fr * PriceDiff

where:

PriceValue is one of: price, price[N], Highest(price, N), Lowest(price, N),

Average(price, N), XAverage(price, N), WAverage(price, N), TriAverage(price, N),

ZLTrend(price, N), DayPrice, TypicalPrice, AS_PivotS, or AS_PivotR;

price is one of: O, H, L, or C;

price[N] is the price N bars ago;

DayPrice is one of: OpenD(0), HighD(0), LowD(0), or CloseD(1);

AS_PivotS is the floor trader pivot support price, which can be at one of three

levels, depending on the function input value;

AS_PivotR is the floor trader pivot resistance price, which can be at one of three

levels, depending on the function input value;

Fr is a constant multiplier; and

PriceDiff is one of: true range, ATR, PriceValue1 – PriceValue2, or

AbsValue(PriceValue1 – PriceValue2), in which PriceValue1 and PriceValue2 are

instances of PriceValue, as described above.

The listed functions, such as OpenD(0) and Highest(price, N), are shown as written in

TradeStation’s EasyLanguage. PriceValue, Fr, PriceDiff, and the associated function

parameters are chosen by Builder during the build process. The N's are chosen from the

"Lookback" ranges (Indicators, Price Patterns) entered on the Parameter Ranges window. Fr

is selected from the "Price Difference Multiple, Entries" range entered on the Parameter

Ranges window.

The following are examples of long stop entry prices:

 EntryPrice = Average(C, 10) + 3.5 * AbsValue(C[5] – H[14])

 EntryPrice = H + 2.1 * AbsValue (Average(C,20) – Lowest(H,15))

These could also be short limit entries since short limit entries are also above the market and

therefore use a “+” sign to add the price difference to the price value.

Examples of short stop entry prices are shown below:

 EntryPrice = OpenD(0) – 1.7 * AvgTrueRange (11)

 EntryPrice = C[16] – 4.3*AbsValue(XAverage(L,5)–Xaverage(C,2))

These could also be long limit entries since long limit entries are also below the market and

therefore use a “-” sign to subtract the price difference from the price value.

10

The following are examples of each type of entry order:

• Enter at Market: buy next bar at market (i.e., buy next bar at the open of the next bar).

• Enter on Stop ($): buy next bar at close + 5 stop (i.e., buy 5 points above this bar's

close).

• Enter on Stop (%): sell short next bar at close * (1 - 0.02) stop (i.e., sell short 2% below

this bar's close).

• Enter on Stop (Price): buy next bar at Average(C, 18) + 1.3 * TrueRange stop (i.e., buy

at the 18-bar average close plus 1.3 times the bar's true range).

• Enter at Limit ($): buy next bar at close - 10 limit (i.e., buy 10 points below this bar's

close).

• Enter at Limit (%): sell short next bar at close * (1 + 0.035) limit (i.e., sell short 3.5%

above this bar's close).

• Enter at Limit (Price): buy next bar at L - Average(H - L, 10) limit (i.e., buy at the low

minus the 10-bar average high-low range).

The following types of exit orders are available in Builder:

• Exit at Target ($)

• Exit at Target (%)

• Exit at Target (Price)

• Trailing Stop ($ Floor)

• Trailing Stop (ATR Floor)

• Protective Stop ($)

• Protective Stop (%)

• Protective Stop (Price)

• Exit After N Bars

• Exit After N Bars Profit

• Exit After N Bars Loss

• Exit After Time

• Exit at Market

• Exit End-of-Day

• Exit End-of-Week

Target Exits

The three target exits use limit orders to exit the trade at a price that represents a profit for

the trade. The first target exit type ($) uses a fixed-size target based on the value of the profit

target (e.g., dollars for accounts denominated in dollars) and is applied per share or contract.

For example, a target size of $500 means the target price is calculated so that if the target is

hit, the profit will be $500 per share or contract before trading costs. For the E-mini S&P

futures, for example, this means the stop size would be 10 points above the entry price for a

long trade because each point is worth $50 for the E-mini. For a stock trade, regardless of the

number of shares, a $2 target would be placed two points above the entry price for a long

trade or 2 two points below the entry for a short trade. The size of the target chosen by the

program during building is based on the "Fixed Target Size" parameter range entered on the

Parameter Ranges window.

Percentage targets are set at a percentage of the entry price above (below) the entry price for

a long (short) trade. For example, if the entry price is 25, a 5% target would be placed 1.25

points above the entry for a long trade. The percentage value is chosen from the "Percentage

Target Size" parameter range on the Parameter Ranges window.

11

Price-based target exits are constructed the same way as limit entry orders. Specifically, the

price for this type of target exit is calculated as follows:

ExitPrice = EntryPrice +/- Fr * PriceDiff

where EntryPrice is the entry price for the trade, and Fr and PriceDiff are as defined

above for entry orders. For exits, Fr is selected by the program from the "Price Difference

Multiple, Exits" range on Parameter Ranges.

For example, the following could be the price for a short target exit:

 ExitPrice = EntryPrice – 4.3 * AbsValue(C[10]–Xaverage(C,2))

Similarly, if the first minus sign were changed to a plus sign, this could be the exit price for a

long target exit.

Trailing Stops

Trailing stops in Builder are activated when the open profit on a closed-bar basis is above a

threshold called the floor. There are two types of trailing stops in Builder: ones with fixed-

size floors ($ Floor), and ones where the floor is calculated as a multiple of the average true

range (ATR Floor). For fixed-size floors, the size of the floor is selected by the program from

the "Fixed Stop Size, Exits" parameter range entered on the Parameter Ranges window. For

ATR-based floors, the multiple of the ATR is selected from the "Price Difference Multiple,

Exits" range on Parameter Ranges. Once the threshold has been reached, the trailing stop is

placed so that a percentage of the open profit is locked in. The stop remains active until the

trade exits. The percentage of profit to lock in is chosen by Builder from the range 0 to 100

percent.

Protective Stops

As with target exits, there are three types of protective (also known as money management)

stops. The fixed-size protective ($) stops use a fixed value (e.g., in dollars for accounts

denominated in dollars), which is applied per share or contract. For example, a stop size of

$500 means the stop price is calculated so that if the stop is hit, the loss will be $500 per

share or contract. For the E-mini S&P futures, for example, this means the stop size would be

10 points below the entry price for a long trade because each point is worth $50 for the E-

mini. For a stock trade, regardless of the number of shares, a $2 stop would be placed two

points below the entry price for a long trade. The size of the stop is based on the range

entered on the Parameter Ranges window ("Fixed Stop Size, Exits").

Percentage (%) protective stops are set at a percentage of the entry price below the entry

price. These types of stops are often used for stock trading. For example, if the entry price is

25, a 5% protective stop would be placed 1.25 points below the entry for a long trade. The

percentage value is chosen from the "Percentage Stop Size, Exits" setting on the Parameter

Ranges window.

Price-based protective stops are constructed the same way as price-based target exits. In fact,

the only difference is that the sign is reversed preceding the PriceDiff portion of the

ExitPrice equation presented above. For example, the equation presented above to illustrate a

short target exit alternatively could be a long protective stop.

Exiting After N Bars

The “Exit After N Bars” order type causes the trade to exit at the open of the next bar when

the number of bars since entry is greater than or equal to N, which is a strategy input chosen

12

by Builder during the build process. The "Exit After N Bars Profit" and "Exit After N Bars

Loss" order types work similarly. With the "Exit After N Bars Profit" order type, the trade is

exited at the open of the next bar if the number of bars since entry is greater than or equal to

N and the close of the bar is greater (less) than the entry price for a long (short) trade; i.e., if

the trade is profitable before costs.

Likewise, with the "Exit After N Bars Loss" order type, the trade is exited at the open of the

next bar if the number of bars since entry is greater than or equal to N and the close of the

bar is less (greater) than the entry price for a long (short) trade; i.e., if the trade is

unprofitable before costs. Normally, N is selected from the "Exit-After Number of Bars"

setting on the Parameter Ranges window. However, for intraday strategies for which the end-

of-day exit has been selected, N is limited to the number of bars in the trading session.

Other Types of Market Exits

The “Exit After Time” order type causes the trade to exit at the open of the next bar when the

time of the current bar is greater than or equal to an input time chosen by Builder. For

example, the exit order might read “If time >= 1030 then sell next bar at market”. Note that

this implies the time stamp for the trade exit will be the time of the bar following the bar

where the exit is triggered. In the preceding example, if the bars are 30 minute bars, the exit

time would be shown as 11:00.

The “Exit at Market” order type causes the trade to exit at the open of the next bar when the

exit condition is true on the current bar.

The “Exit End-of-Day” order type causes the trade to exit at the close of the last bar of the

current day if intraday or daily bars are used. On weekly or monthly data, this exit causes the

trade to exit at the close of the current bar. For TradeStation and MultiCharts, this exit type

is primarily for back-testing purposes. It can be problematic because the market will be

closed by the time the order is sent, which means it may be placed in the after-hours market

as a limit order and therefore may not be filled. To achieve end-of-day exits in real-time

trading on intraday data in any of the supported languages, the optional time-based exit on

the Strategy Logic window should be used. The End-of-Day exit type is not available for

MetaTrader 4 or AmiBroker. For NinjaTrader, this exit only applies to intraday data.

The “Exit End-of-Week” order type is essentially the End-of-Day exit applied on a Friday. It

causes the trade to exit at the close on Friday. This order type is only available for

EasyLanguage code (TradeStation/MultiCharts), which is the only supported language that

includes an end-of-session order type ("SetExitOnClose"), other than NinjaTrader, which

does not allow the end-of-session exit to be restricted to a specific day. Please note that the

exit occurs only on a Friday, so if there are no bars on Friday, there will be no exit that week

via this order type. As with the End-of-Day exit, this exit type can be problematic because the

market will be closed by the time the order is sent, which means it may be placed in the after-

hours market as a limit order and therefore may not be filled. As an alternative to achieve

end-of-week exits in real-time trading on intraday data in any of the supported languages,

the optional time-based exit on the Strategy Logic window can be used with the optional day-

of-week restriction.

Neural Networks
Neural networks are nonlinear models loosely based on the way the brain is structured as a

network of interconnected neurons. A neural network is established by fitting it to a given set

of input and output data with the goal of accurately predicting the output from input data not

used in the fitting process. A successful neural network is one that generalizes well to new

input data.

13

A neural network is often described graphically as a set of nodes connecting an input layer

through a "hidden" layer of nodes to one or more outputs. The inputs are summed together

using a set of weights that connect the nodes to produce the output. The weights are

determined by the fitting or training process. A neural network with a single output and one

hidden layer is shown below in Fig. 1.4.

Figure 1.4. A neural network with a single output and one hidden layer.

The output from the network is defined by the following equations:

 H1 = tanh(w11 * I1 + w21 * I2 + … + wn1 * In)

 H2 = tanh(w12 * I1 + w22 * I2 + … + wn2 * In)

 …

 Hm = tanh(w1m * I1 + w2m * I2 + … + wnm * In)

 Output = tanh(wnm+1 * H1 + wnm+2 * H2 + … + wnm+m * Hm)

The Ii represent the inputs. In the context of trading, these could be anything that might have

some predictive value for trading, such as momentum, stochastics, ADX, moving averages,

etc. The Hj represent the hidden nodes, the weights are given by the wkl, and the output value

by Output. The hyperbolic tangent function, tanh, returns a value in the range -1 to +1, so the

output will lie in this range. The inputs are typically scaled so that they also lie between -1

and +1.

Training the network to determine the weight values involves iterating on the weights using

known input-output data. The technique traditionally used to adjust the weights in an

iterative manner is called back-propagation, although any similar approach may be used,

such as a genetic algorithm.

In Builder, the inputs to the network are chosen by the genetic programming process and

evolved along with the entry and exit conditions using the same processes of crossover and

mutation used to evolve the entry and exit conditions. The output of the network allows for a

long entry if it's greater than or equal to 0.5 and for a short entry if it's less than or equal to -

0.5. This condition is in addition to any existing entry conditions (see Trading Strategy

Structure, below). For example, if there is a long entry condition, it must be true and the

neural network output must be at least 0.5 for a long entry.

As suggested above, the inputs to the neural network are scaled so that they lie between -1

and +1. The scaling is performed on a moving or trailing basis over the most recent

14

NNLookBack bars. In other words, the minimum and maximum values of each input over

the most recent NNLookBack bars are used to scale each input so that it lies between -1 and

+1. The value of NNLookBack is a user-selectable option with a default value of 100.

In addition to evolving the inputs to the network, Builder also evolves the number of nodes

in the hidden layer and the weight values. The initial number of inputs is a user-selectable

option, along with the maximum number of nodes in the hidden layer. The number of inputs

may change from strategy to strategy over successive generations as the inputs from different

strategies are combined using crossover.

The total number of weights in the network will be given by (n + 1) * m, where n is the

number of inputs and m is the number of nodes in the hidden layer, provided m is at least

one. If there is no hidden layer (i.e., m is zero), the number of weights is the same as the

number of inputs. In the resulting strategy code, each weight is listed as a strategy input.

Other strategy inputs may result from the network inputs, such as the look-back length of a

moving average.

To include a neural network, simply check the option on the Neural Network window and

select the available settings, such as the initial number of inputs and the maximum number of

hidden nodes. To develop strategies in which the neural network provides the only entry

condition, set the tree depth (GP Settings) to zero, which will ensure that the usual entry

conditions are always "true".

Trading Strategy Structure
Trading strategies in Builder have the following general form, shown below in pseudo-

code:*

Inputs: N1, N2, N3, …

LongEntryCondition = …

ShortEntryCondition = …

LongExitCondition = …

ShortExitCondition = …

[Neural network inputs]

[Neural network output function]

If [position is flat and] LongEntryCondition is true

 [and neural network output >= 0.5] then

 Long entry order…

 Initialize long exit orders as necessary…

If [position is flat and] ShortEntryCondition is true

 [and neural network output <= -0.5] then

 Short entry order…

 Initialize short exit orders as necessary…

If position is long then

 Long exit order 1…

15

 Long exit order 2…

 …

If position is short then

 Short exit order 1…

 Short exit order 2…

 …

[End-of-day exit]

* Code shown in brackets [] is optional.

Strategies in Builder start with the list of inputs. An input is provided for any indicator

parameter, price pattern look-back length, and any parameters required by the entry and exit

orders, such as the look-back length for the ATR.

The LongEntryCondition through ShortExitCondition variables are the true/false conditions

evolved by the genetic programming process, such as shown in Fig. 1.3. A long entry order is

placed if the long entry condition is true, subject to the optional conditions, such as that the

position is currently flat (out of the market) and that the neural network output value is above

the threshold value. Likewise, a short entry order is placed if the short entry condition is true,

subject to the optional conditions. An open long trade is exited at the next open if the long

exit condition is true on the current bar. An open short trade is covered (exited) at the next

open if the short exit condition is true is on the current bar.

Only one type of entry order is allowed for each side of the market (long/short), although

they can be different for each side unless the symmetry option is selected. When an entry

order is placed, one or more variables for the exit orders may be initialized within the entry

order code block.

The statements for the exit orders follow the entry orders. One or more exit orders may be

chosen by the program, with a maximum of one exit order of each type listed above. Unless

the necessary orders have been excluded from the build set by the user, the program will

ensure that each strategy has an exit-at-a-loss and an exit-at-a-profit. This prevents trades

from remaining open indefinitely.

The optional end-of-day exit must be specified by the user on the Order Types window in

order to be included in the strategy.

The meaning of common input variables and order labels used in the strategy code is

explained in Appendix: Code Conventions.

Example
As an introductory example, Builder was run on daily bars of a stock index futures market.

The performance metrics chosen to guide the process are shown below in Fig. 1.5. In

addition to maximizing the metrics shown under Build Objectives, specific requirements

("Build Conditions") were set for the correlation coefficient, trade significance, and the

number of trades. The build metrics define the fitness function that's used to drive the

evolution of the population.

16

Figure 1.5. Build metrics for example build.

Figure 1.6. Genetic programming settings for example build.

17

Figure 1.7. Fitness on the training and test segments during the build process.

Figure 1.8. Closed trade equity curve after build.

18

The genetic programming (GP) settings are shown in Fig. 1.6. The population size was set to

500 with the fittest 100 strategies saved after building. At the end of the 20th generation, the

Build Failure Rules were evaluated. These rules help determine if the build process is

proceeding normally or if the results are being over-fit. If either of the checked rules applies,

the build process will be restarted. After 30 generations, the Build Termination rules were

evaluated after each generation. These rules help determine if the build process is still

improving the results or if the population has converged. If either of the checked rules

applies, the build process will be stopped.

The train/test/validation division of data was set to 65% training, 20% test, and 15% validation. The

build process ran over a total of 32 generations before one of the build termination rules stopped the

build. To illustrate how the results evolved during the build, the Build Termination Tracking plot from

the Build Progress window is shown in Fig. 1.7. The curve labeled "Train Fit" shows how the fitness

on the training segment changed with each generation. The curve labeled "Test Fit" illustrates the

fitness on the test segment, including a moving average defined by the settings made under Build

Termination Options (Fig. 1.6).

As shown in Fig. 1.7, the fitness on the training segment generally increased throughout the build

process, as expected, given that the GP process is designed to improve the results on the training data.

The fact that the fitness also increased on the test segment, which is not used to evolve the population,

indicates a good quality build. When the fitness on the test segment started to drop off, indicating that

the strategies might be starting to over-fit the training data, the build process was stopped by one of

the build termination rules. The generation with the highest fitness on the test segment was saved for

the final results according to the option shown in Fig. 1.6.

After the build process was completed, the population results were sorted by the fitness on the test

segment. The equity curve for one of the strategies with the highest fitness on the test segment is

shown above in Fig. 1.8, indicating positive results on the validation segment. Finally, the

EasyLangauge (TradeStation) code for the corresponding strategy is listed below.

{---

 Trading Strategy Code

 Population member: 105

 Max bars back: 87

 Created by: Adaptrade Builder version 2.1.0.0

 Created: 11/4/2016 5:31:20 PM

 Scripting language: TradeStation 6 or newer

 Price file:

 Build dates: 5/1/2006 to 5/22/2012

 Project file: UG_Example_Ch1_v210.gpstrat

---}

{ Strategy inputs }

Inputs: NL1 (4), { Day of week (0 to 6 for Sunday to Saturday), long trades

}

 NL2 (36), { Indicator look-back length (bars), long trades }

 NL3 (17), { Indicator look-back length (bars), long trades }

 ShiftL1 (7), { Indicator shift value (bars), long trades }

 NS1 (7), { Indicator look-back length (bars), short trades }

 NS2 (50), { Max look-back length for adaptive indicator (bars),

short trades }

 NS3 (43), { Indicator look-back length (bars), short trades }

 NS4 (50), { Max look-back length for adaptive indicator (bars),

short trades }

 NS5 (37), { Indicator look-back length (bars), short trades }

 NS6 (22), { Indicator look-back length (bars), short trades }

 NS7 (6), { Indicator look-back length (bars), short trades }

 XS1 (4.5736), { TrendParam value for adaptive indicator (-5 to 5), short

trades }

19

 XS2 (2.0417), { TrendParam value for adaptive indicator (-5 to 5), short

trades }

 XS3 (0.9537), { Multiple of price difference (e.g., ATR), exit, short

trades }

 NBarExL1 (11), { Number of bars from entry for market exit if

unprofitable, long trades }

 EntrySzS (790.00), { Value of fixed size entry (stop/limit) per

share/contract, short trades }

 TargFrS (0.9144), { Multiple of price difference (e.g., ATR), exit, short

trades }

 NBarExS1 (10), { Number of bars from entry for market exit, short trades

}

 PSParam (1.00), { Position sizing parameter value }

 RoundPS (true), { Round-to-nearest (true/false) }

 RoundTo (1), { Round-to position size value }

 MinSize (1), { Minimum allowable position size }

 SizeLimit (100); { Maximum allowable position size }

{ Variables for entry and exit prices }

Var: EntPrS (0),

 TargPrS (0);

{ Variables for entry and exit conditions }

Var: VarL1 (0),

 VarL2 (0),

 VarL3 (0),

 VarS1 (0),

 VarS2 (0),

 VarS3 (0),

 VarS4 (0),

 VarS5 (0),

 VarS6 (0),

 VarS7 (0),

 EntCondL (false),

 EntCondS (false),

 ExCondL (false),

 ExCondS (false);

{ Variables for position sizing }

Var: NShares (0);

{ Entry price }

EntPrS = C - EntrySzS/BigPointValue;

{ Entry and exit conditions }

VarL1 = DayOfWeek(date);

VarL2 = FastD(NL2);

VarL3 = FastK(NL3)[ShiftL1];

VarS1 = AdaptiveIRSI(O, NS1, NS2, XS1);

VarS2 = AdaptiveIRSI(L, NS3, NS4, XS2);

VarS3 = Average(VarS2, NS5);

VarS4 = StandardDev(O, NS6, 1);

VarS5 = VarS4 * XS3;

VarS6 = Momentum(L, NS7);

VarS7 = AbsValue(VarS6);

EntCondL = VarL1 <= NL1;

EntCondS = VarS1 crosses above VarS3;

ExCondL = VarL2 >= VarL3;

ExCondS = VarS5 >= VarS7;

{ Position sizing calculations }

NShares = PSParam;

If RoundPS and RoundTo > 0 then

 NShares = IntPortion(NShares/RoundTo) * RoundTo;

NShares = MaxList(NShares, MinSize);

NShares = MinList(NShares, SizeLimit);

{ Entry orders }

If MarketPosition = 0 and EntCondL then begin

20

 Buy("EnMark-L") NShares shares next bar at market;

end;

If MarketPosition = 0 and EntCondS then begin

 Sell short("EnStop-S") NShares shares next bar at EntPrS stop;

end;

{ Exit orders, long trades }

If MarketPosition = 1 then begin

 If ExCondL or (BarsSinceEntry >= NBarExL1 and C < EntryPrice) then

 Sell("ExMark-L") next bar at market;

end;

{ Exit orders, short trades }

If MarketPosition = -1 then begin

 TargPrS = EntryPrice - TargFrS * TrueRange;

 Buy to cover("ExTarg-S") next bar at TargPrS limit;

 If ExCondS or BarsSinceEntry >= NBarExS1 then

 Buy to cover("ExMark-S") next bar at market;

end;

For additional examples, please see the Newsletters section on the Adaptrade.com web site.

Chapter 2
Getting Started

Installation

Recommended System Requirements:

 3 GHz or faster processor

 8 GB or more RAM

 64-bit Windows Vista or newer operating system

 Monitor: 17 inch or larger

Adaptrade Builder can be downloaded by clicking the "Customer Login" link in your

purchase receipt. Enter the login information provided in the receipt, then click the Download

button. Unzip the downloaded file to extract the installation file for Builder, which should

look similar to the following setup file for version 3.0.0: BuilderLicensedSetup_v300.exe. The

installation file is self-extracting. To install the program, browse to the location of the

extracted installation file via Windows Explorer and double-click on the file to open and run

it. Alternatively, select Run from the Accessories menu under the list of programs in the Start

menu, browse to the location of the file, click Open, then click OK in the Run window. The

installation should begin.

The installation program will prompt you for the location to install the program files. The

default location is the folder Program Files\Adaptrade Software\Adaptrade Builder x.x.x\,

where x.x.x is the version number (e.g., 3.0.0). You can install the program in another location

if you wish.

Note about 32 vs. 64-bit versions: Current versions of Builder are available only for 64-bit

versions of Windows, which allows the program to take advantage of all available installed

memory to process larger data files. If you're not sure which version of Windows you have,

you can check the System settings under the Control Panel. Current versions should run on

all recent releases of Windows from Windows 7 to the present. Since Builder is very

computationally intensive, older hardware and older versions of Windows, such as XP,

are not recommended.

Once the installation is complete, you should find the Builder icon, as displayed on the title

page of the user’s guide, on your desktop and the Builder program in the programs menu. You

should also find a folder called Examples in the Adaptrade Builder folder. The Examples

folder contains sample files that can be opened by Builder. In addition, the bonus strategies

and other bonus files should be located in the Bonus folder in the Adaptrade Builder folder.

The file ReadMe-BuilderBonusFiles.htm in Bonus describes the files in the Bonus folder.

To activate Builder, enter the license ID provided in the purchase receipt and your activation

password in the spaces provided on the activation screen, which will be displayed when the

program is first run.

Note: While the licensed version of Builder and the trial version are functionally identical, the

trial version only runs for the length of the trial period and cannot be activated. The licensed

version of Builder, which is the version activated by your license ID and password, must be

downloaded after purchase via the Download link in your online account, as described above.

22

Platform Files: Builder includes several functions and indicators that need to be installed into

the trading platforms for Builder-generated strategies to run properly. If these functions are

not installed, the strategies generated by the program will not compile or run. These functions

must be installed separately for each platform you intend to use for trading. Please read the

sections below for the platforms you intend to use. To determine if the platform files have

been updated for the current release and therefore need to be re-installed (if installed

previously), please refer to the Release Notes page at Adaptrade.com or see the notes on the

trial download page for the current release.

TradeStation/MultiCharts Installation Notes. Several files that work in conjunction with

Builder need to be installed separately into TradeStation or MultiCharts. These files can be

found in the EasyLanguage folder in the Adaptrade Builder folder under Program Files after

Builder is installed. For current versions of TradeStation, the files end with the file extension

.eld. For TS 2000i, the file extension is .els, and for MultiCharts, the extension is .pla. The

files should be imported into TradeStation using the import command of the File menu. For

MultiCharts, the files can be imported via the Import command of the File menu in the

PowerLanguage Editor. Please refer to the platform documentation for instructions on

importing .eld/.els/.pla files into TradeStation/MultiCharts.

The specific files that need to be imported into TradeStation/MultiCharts include

NNCOMPUTE, which contains functions for use with the neural network option in Builder,

and BUILDER_INDICATORS_V3 (e.g., BUILDER_INDICATORS_V3-TS.ELD for current

versions of TS), which contains the adaptive indicators (Adaptive VMA, Adaptive ZLT, etc.).

NinjaTrader 7/8 Installation Notes. Strategies created with either the NinjaTrader 7 or

NinjaTrader 8 code option require several indicator and strategy files to run. Without these

files, the NinjaScript code will not compile or execute. These files are contained in a zip file

named NinjaTrader.Adaptrade.zip or NinjaTrader8.Adaptrade.zip for NinjaTrader 7 or

NinjaTrader 8, respectively, which can be found in the NinjaScript7 or NinjaScript8 folder in

the Adaptrade Builder folder under Program Files after Builder is installed.

To install the files into NinjaTrader 7, open NinjaTrader 7, select Utilities from the File menu

and select Import NinjaScript… Browse to the NinjaScript7 folder in the Adaptrade Builder

installation folder and select the NinjaTrader.Adaptrade.zip file. Follow the prompts to install

the files into NinjaTrader 7.

To install the files into NinjaTrader 8, open NinjaTrader 8, select Import from the Tools menu

and select NinjaScript Add-On... Browse to the NinjaScript8 folder in the Adaptrade Builder

installation folder and select the NinjaTrader8.Adaptrade.zip file. Follow the prompts to

install the files into NinjaTrader 8.

MetaTrader 4 Installation Notes. MetaTrader 4 strategies created by Builder require files

contained in three folders: Include, Indicators, and Libraries. These folders can be found in the

MT4 folder in the Adaptrade Builder folder under Program Files after Builder is installed. The

files in these folders provide basic functionality that any MetaTrader 4 strategy generated by

Builder may require. All the files contained in the three folders should be copied to the

corresponding folders within your MetaTrader 4 installation so that MetaTrader 4 can find

them when compiling strategies. For MT4 version 600 and newer, the correct folder locations

can be found using the "Open Data Folder" command of the File menu in MT4. The general

form of the folder path is

C:\Users\User_account_name\AppData\Roaming\MetaQuotes\Terminal\Instance_id, in which

User_account_name and Instance_id are specific to the user's computer. Within this folder, the

Include, Indicators, and Libraries folders are located in the MQL4 folder.

23

In versions of MT4 prior to version 600, the three folders are located in the installation folder

in the experts folder (C:\Program Files (x86)\MetaTrader 4\experts\).

AmiBroker Installation Notes. AmiBroker strategies created by Builder require an

associated "include" file: ASBuilderCommon.afl. This file can be found in the AFL folder in

the Adaptrade Builder folder after Builder is installed. This file needs to be copied to the

Include folder in the AmiBroker Formulas folder under Program Files. The full path under 64-

bit Windows is C:\Program Files\AmiBroker\Formulas\Include. This file provides basic

functionality that all AmiBroker strategies generated by Builder require.

When installing a new version of Builder on a computer that currently has a prior version

installed, please note the following:

• Since new versions of Builder install in folders that are specific to the version number, it

should not be necessary to uninstall a prior version of Builder before installing a newer

one. It's not necessary to uninstall the trial version prior to installing the licensed version

of Builder.

• Provided the installation is on the same computer as the prior installation, no new

activation code should be required. The new version should install already activated. If

not, it may be necessary to enter your license ID and password, as provided on your

purchase receipt. If you need an additional activation, please contact Adaptrade Software.

• Uninstalling an older version will not affect any project files (.gpstrat files) you may have

created or saved.

• New versions of Builder are designed to read files (.gpstrat files) from prior versions.

However, once a file is saved in the new version of Builder, you will not be able to open

it in an older version. Use File -> Save As if you wish to retain both versions.

Builder can be uninstalled through the Windows Control Panel.

Please note that uninstalling and reinstalling Builder will not affect the pane layout and other

user interface settings. These settings are stored in the Windows registry. All panes in

Builder can be moved and resized by clicking and dragging, as explained in Program Layout

and Configuration, below. You can reset the layout by clicking the Reset Layout button on

the View menu.

Program Layout and Configuration
The user interface of Adaptrade Builder consists of a number of different windows and

panes. The overall layout of the program can be changed by clicking the Strategy Builder

button in the Build menu, which can be seen in the upper left-hand corner of Fig. 1.1. This

button switches the layout between charting mode and building mode. In building mode, the

program includes all the results windows and panes used to display the results of the build

process, as shown in Fig. 1.1. In charting mode, shown below in Fig. 2.1, the charting pane

becomes more prominent, and the build-related panes are closed. As an alternative to

clicking the Strategy Builder button, any of the different windows and panes can be opened

or closed at any time by clicking the corresponding boxes on the View menu.

The so-called ribbon menu is located at the top of the main window and consists of the File,

Build, Evaluation, Position Sizing, View, and Clipboard menus. In the Build menu, most of

the buttons activate drop-down windows for entering build settings, such as the genetic

programming (GP) settings, build metrics, strategy logic, and so on. To save space, the

ribbon menu can be minimized by clicking the ^ button in the upper right-hand corner of the

main window next to the Theme menu.

24

Figure 2.1. Adaptrade Builder in charting mode.

Aside from the ribbon menu and the chart window, most of the other windows displayed in

build mode are referred to as docking windows or panes. Docking panes are floating

windows that can be re-positioned by clicking and dragging. The panes shown in Fig. 1.1

consist of the Symbols, Build Results, Messages, and the set of tabbed panes for the

Performance Report, Build Report, Equity Curve, Trade List, and Strategy Code windows.

The Symbols pane (i.e., symbol library) displays all the market symbols that can be plotted

or used in building strategies. To build a strategy for a new market, the symbol must be

added to the symbol library through this pane. Once added to the library, the associated price

data are available to any project.

The Build Results pane displays summary statistics for all strategies in the population. This

is the main display of results from the build process, where each row in the table represents a

strategy in the population. Clicking on a row in the table changes the display of results in the

tabbed results windows (Equity Curve, Trade List, Strategy Code, etc.), which display the

results for the selected strategy. In addition, if the option to show the strategy trades on the

price chart has been selected, the chart(s) will be updated to display the trades for the

selected strategy.

There are several non-pane windows as well. The Build Symbols window is where you select

the markets to use in the build process. Similarly, the Evaluation Symbols window allows

you to select symbols for evaluating strategies separate from the build process. Another non-

pane window is the Build Progress window, which displays two graphs that show the

progress of the build process while it's ongoing. This window can be left open while working

elsewhere in the program or it can be minimized or closed as desired. It can also be opened

or closed at any time through the View menu.

The Trading Orders window is also a non-pane window. This window is displayed when the

option to "Show Trading Orders" is selected on the right-click context menu of the chart

window. This window can also be kept open while working elsewhere in the program and

can be opened and closed through the View menu.

25

Changing the Pane Layout

Panes are moved by clicking and dragging them relative to each other and to the outer

window frame. To move a pane, click the title bar and start dragging the window. This action

will cause a set of docking locations to appear. You can move the mouse cursor over the

different docking locations to see a preview of where the window will appear if you release

the mouse at that location. You will usually see four docking locations (top, bottom, left,

right) for the entire program window (main frame) and four others relative to the current

pane location. When two or more panes are moved to the same location, they appear with

tabs, as with the Equity Curve and Strategy Code windows. The tabs can be moved relative

to each other by clicking and dragging.

To rearrange the pane windows, sometimes it’s necessary to move them in multiple steps.

For example, to switch the locations of the symbols pane and the set of tabbed results panes,

you could move the symbol pane to the right of the tabbed results panes first, then move the

tabbed results panes as a group to the left of the charts. Because the chart view window is not

a docking window, it can’t be moved directly. If you want to move the chart windows to a

different location, you can move the other panes relative to them. For example, if you want

the chart windows on the right, you could drag the equity curve pane, along with the other

panes in that tab group, to the left side. This will force the chart windows to the right. Any

pane can be closed using the close button in the upper right-hand corner of the title bar. Use

the View menu to restore a closed pane.

Deleting the Registry Entry

When Builder is first installed, it arranges the panes in the default configuration shown in

Fig. 1.1. To reset the program layout to the default configuration, click the Reset Layout

button on the View menu. Uninstalling and reinstalling Builder won’t affect the layout

because the layout is stored in the registry, which is not deleted during uninstall. If it's

necessary to change a setting not affected by the Reset button, the registry entry must be

deleted. To do this, use the Windows Regedit program. Type "regedit" into the search box in

the Windows Start menu, browse to the location of the registry entry for Builder, and delete

the folder SettingsXXX, where XXX is the version number (e.g., Settings250 for version

2.5.0). The registry entry for Builder is located at

HKEY_CURRENT_USER\Software\Adaptrade Software\Builder\.

In addition to the pane layout, the registry also stores the name of the project file to open

when Builder first starts up. If this file becomes corrupted or damaged for any reason, it may

prevent Builder from starting correctly. If you believe this has happened, you can try deleting

the registry entry, which will prevent the program from trying to open the damaged project

file when it starts up.

Working with Project Files
The settings made in Builder can be saved for later use. Builder project files end with the

extension .gpstrat; e.g., MySampleFile.gpstrat. To save your work, select Save Project from

the File menu. This will prompt you to select or enter a file name. This file will not include

the price data but will save the name and location of the text file containing the price data. To

return to the project file later, open it by selecting it from the list of recently used files on the

File menu or select it using the Open Project command of the File menu. Project files also

store the strategy code for all the saved strategies, as shown in the Build Results tables, along

with the performance results for each strategy. Only one project file can be open at a time.

When New is selected from the File menu, the new project is given the default name

"BuilderProject". When Save is subsequently selected, you'll be prompted to enter a new file

26

name. If Close is selected from the File menu, you'll be prompted to save the file if it has not

been saved since last changed, and the current project file will be closed. When no project

file is open, most of the menu commands are unavailable, and you'll be unable to start a new

project until selecting New.

If a project file is open at the time the program is exited, that project file will be

automatically opened upon start-up the next time Builder is run.

Quick Start Steps
The process of building trading strategies in Adaptrade Builder begins by specifying the

price data or market symbols. Next, a series of settings is entered via the ribbon menu. The

settings determine the types of strategies that are built and control various aspects of the

build process. While the build process is ongoing, progress messages are displayed in the

Messages window. Additionally, the results windows (Build Results, Performance Report,

Build Report, Equity Curve, Trade List, and Strategy Code) are updated after each generation

is completed.

Step 1. Obtain the Price Data

Builder is designed to read files of price data saved in text format, such as price data saved

from the TradeStation Data Window. To display the Data Window from a TradeStation price

chart, go to the View menu in TradeStation and select Data Window. To save the price data

to a text file, click the disk icon on the data window, or, for TS 2000i, right-click and select

“Send to File”. In the Save-As dialog, select a file, then click the Save button. This will save

the price data for the chart window to the text file you’ve selected. In MultiCharts, select

"Export Data" from the File menu to save the chart data to a text file. In MetaTrader 4, go to

the Tools menu and select History Center. Select the symbol from the list at left and click the

Export button. In NinjaTrader 7, use the Export tab on the Historical Data Manager window.

In NinjaTrader 8, select Export → Historical Data from the Tools menu. For AmiBroker, the

price data should be exported to a text file using the software provided by your data vendor.

Step 2. Add the Price Data File Obtained in Step 1

Open Builder and, in the Symbols pane, select a folder, right-click, and select the Add New

Symbol command or click the Add New Symbol button at the bottom of the Symbols pane.

This will open a "Select Symbol File" dialog window that will enable you to select the text

file of price data obtained in Step 1. Select the file of price data and click the Open button.

The Data File Format window, as shown in Fig. 2.2, will then open.

The top table displays the contents of the price file and enables you to set the formatting that

tells the program how to read and interpret the data in the file. Select the field delimiter

(comma, semi-colon, tab, or space) used in your file to separate the data fields. The default

column headings for the data fields are date, time, open, high, low, close, and volume. Click

any column heading in the table to change, add, or remove its label. Each column of data you

want the program to read should have a label. Change the heading for the volume column(s)

as necessary, depending on whether the price file contains one column of volume data or

separate columns for up-tick and down-tick volume. Click the Clear Column Headings

button to remove all column labels in order to start fresh.

27

Figure 2.2. The format of the price file is selected on the Data File Format window.

Click the Specify Data Format button to specify how the date and price fields are formatted.

This will open the Data Format window (see the Symbols and Settings chapter), which

allows you to select either a locale for reading the data, such as "English (US)", or a set of

specific formatting options, such as MMDDYYYY for the date format. Data formats can be

saved for future use. Similarly, the file formatting options selected on the Data File Format

window, including the data format, can be saved for future use, as indicated by the Save File

Format button in Fig. 2.2.

Once you've selected the format for the file of price data, clicking OK will open the Symbol

Properties window, shown below in Fig. 2.3. Enter values for each entry in the list of

properties, including symbol, bar type, point value, and so on. Builder will try to properly

infer the bar type, bar size, and session times from the data file. If any of these are incorrect,

they should be manually corrected here. Click OK to return to the Symbols pane.

To add the newly entered symbol to the build process, where it will be used to build your

strategy, right-click on the symbol and select Add to Build or click the Add to Build button at

the bottom of the Symbols pane. Any symbols added to the build in this manner will be

displayed in the Market Symbols table in the Build Symbols window, shown below in Fig.

2.4.

Click the Add button to add a price file from the symbol library or click Delete to delete one

from the table. Select the files to include in the build by checking the boxes in the Include

column. Select the data series for each symbol using the Series column. The symbol or

symbols on which the trades are placed are the "Primary" series. If more than one primary

series is selected, the strategies will be evaluated on all such symbols with trades placed on

all primary symbols. The reported performance will represent the combined results from all

primary markets. Symbols marked as 2, 3, 4, and so on, are secondary series. The program

may incorporate these symbols into the strategy logic depending on the build process. In

TradeStation, for example, these series are referred to as "data2", "data3", "data4", etc.

28

Figure 2.3. Symbol Properties window.

The settings in the Market Symbols table for Bar Type, Bar Size, and Trading Costs are the

settings you want to use when building and/or evaluating a strategy. These can be different

from the values for the symbol in the library. For example, if the price file consists of 1

minute bars, the settings in the Symbol Properties window should always specify 1 minute

bars, but once added to the Build Symbols window, you can change the bar type to any

multiple of 1 minute or to daily, weekly, monthly, or range bars.

Figure 2.4. Settings for the markets used in the build are made on the Build Symbols window.

Step 3. Select the Date Ranges

The Build Symbols window also includes controls for changing the start and end dates for

analysis as well as the training/test/validation ranges. You can change the start and end dates

29

for building a strategy by clicking on the calendar controls for "Starting Date" and "Ending

Date". Move the sliders to change the amount of data used for the training, test, and

validation segments. The training data are used in building the strategy. Test data are used in

evaluating the results on the training segment, which helps to guide the build process. The

validation data are used to verify the final results. Because the validation data are not used

during the build process, the results achieved on validation data are unbiased. The default

percentages are 60/20/20 for training/test/validation.

Step 4. Choose the Genetic Programming (GP) Settings

The GP Settings button in the Build Settings panel of the Build menu opens the GP Settings

drop-down window, as shown in Fig. 2.5. Different options that influence the build process

are selected on this window. For example, this is where you enter the population size and the

number of generations. You can also select from two different Build Failure Rules, which

will restart the build process after a specified number of generations if the results on the test

segment are not satisfactory. The build process can be terminated (Build Termination

Options) when a maximum number of generations has been completed or when the fitness on

the test segment starts to decline.

Figure 2.5. Options that affect the build process are specified on the GP Settings drop-down

window.

You can also modify the crossover and mutation percentages, tree depth, and tournament size

on this window. These options are discussed further in the next chapter. To incorporate the

30

best strategies from the prior build into the next build, uncheck the Reset on Build box before

building. This will cause Builder to initialize the population with the saved strategies from

the prior build. The number of saved strategies is specified using the “After building, save []

fittest strategies” option. If the Reset on Build box is checked, the population will be

initialized randomly, which is the default.

Step 5. Select the Build Metrics

The Build Metrics window is shown in Fig. 2.6. This is where you select the build objectives

and conditions that will guide the build process. Strategies are ranked during the genetic

programming process according to the fitness, which is a combination of the build objectives

and conditions selected on this tab. The objectives are metrics that you want to minimize

(e.g., drawdown) or maximize (e.g., net profit). The conditions are expressed as inequality or

equality statements, such as a correlation coefficient greater than or equal to 0.95 or the

number of trades between 100 and 300. The third list box is for selecting conditions for

filtering the strategies for the Top Strategies results. Use the buttons adjacent to each list to

add, modify, or remove entries from the list. A right-click (context) menu is also available,

and items can be cut (Ctrl-X), copied (Ctrl-C), and pasted (Ctrl-V).

Figure 2.6. Build metrics are specified in the Build Metrics window by selecting objectives and

conditions for key performance metrics.

31

Figure 2.7. The indicators available in Builder are listed on the Indicators window. Indicators can be

removed from the build set by un-checking the item in the "Consider" column.

Step 6. Select Indicators and Order Types

Indicators are selected on the Build menu in the ribbon by clicking the Indicators button,

which opens the Indicators window, shown in Fig. 2.7. The available order types are listed in

the table on the Order Types window, shown in Fig. 2.8. The tables on these two windows

represent the build set, which contains the list of indicators and the list of order types that the

program draws from during the genetic programming process. To remove a specific indicator

or type of order from the build set, click the corresponding row in the Consider column of the

table. Removing an indicator or order type from the build set means it won’t be considered

by the program when constructing strategies. Removing too many items may reduce the

likelihood of finding viable strategies. Clicking an order type in the Include column in the

Order Types table ensures that the order type will be included in each generated strategy.

32

Figure 2.8. The types of trading orders available in Builder are listed on the Order Types window.

Orders types can be added or removed from the build set using the Consider column and added to

each strategy using the Include column.

Step 7. Select Strategy Options on the Build Menu

The Build menu is shown in Fig. 2.9. The settings in the Strategy Options panel control the

types of strategies generated by Builder. Clicking the Strategy Logic button opens a drop-

down window containing options for long/short symmetry, trade entry and exit time ranges, a

limit on the number of entries per day, and other strategy logic options. The Neural Network

drop-down window allows you to add a neural network to the strategy and set the associated

parameters. Clicking the Parameter Ranges button opens a drop-down window that allows

you to enter minimum and maximum values for constants used by the program, such as the

multipliers for the average true range (ATR) and look-back lengths for indicators and price

patterns. Also shown in Fig. 2.9 is the Market Sides panel, which allows you to restrict

entries to either long or short trades only or to include both long and short trades in the same

strategy.

Figure 2.9. The Build menu provides access to most of the settings related to building strategies.

Figure 2.10. Options that affect how strategies are evaluated are set on the Evaluation menu.

33

Figure 2.11. Position sizing options determine how many shares or contracts are traded.

Step 8. Select Evaluation and Position Sizing Options

Options that affect how strategies are evaluated are selected on the Evaluation menu, shown

in Fig. 2.10. The principal options on this menu are the starting equity value, which can

affect position sizing, and the code type. Position sizing settings are made on the Position

Sizing menu, shown in Fig. 2.11. You can choose from six different position sizing methods.

You can also choose whether you want the build process to select the method for you and/or

whether the build process will select the position sizing parameter value, such as the fixed

fraction for fixed fractional position sizing. Other options on this tab include the maximum

number of shares or contracts that will be traded and whether or not to round the position

size to the nearest value, such as rounding the number of shares to the nearest 100.

Select the code type for your target trading platform prior to building. While it's possible to

change to a different code type after building, different results may be found due to the fact

that some indicators are evaluated differently for different platforms and some indicators and

strategy options are not available for some code types.

After making the preceding settings, it’s good practice to save them by selecting Save Project

from the File menu. This will prompt you to select or enter a file name for saving all the

settings you’ve made up to this point. The resulting file will have the file extension

“.gpstrat”. This file will not include the price data but will save the name and location of the

text file containing the price data. To return to the project file later, open it by selecting it

from the list of recently used files on the File menu or select it using the Open Project

command of the File menu.

Step 9. Start the Build Process

Click the Build button in the Build Strategies panel of the Build menu (Fig. 2.9) to start the

build process. A message is displayed in the Messages window near the bottom of the main

window during each step of the process. After each generation is completed, the results

windows (Build Results, Performance Report, Build Report, Equity Curve, Trade List, and

Strategy Code) are updated. The summary performance metrics for each of the strategies are

displayed in the Build Results tables. Click on a row in the results table to display the results

for the corresponding strategy in the Performance Report, Build Report, Equity Curve, Trade

List, and Strategy Code windows. The build process can be cancelled at any time by clicking

the Cancel button or paused by clicking the Pause/Resume button.

Step 10. Evaluate the Generated Strategies and Adjust if Necessary

After the build termination conditions are met or the Cancel button is clicked, the build

process stops. The generated strategies are listed in the Build Results tables in order of

decreasing fitness. Builder will save any number of strategies you specify on the GP Settings

window up to the population size. Evaluate the saved strategies by reviewing the build and

performance reports, equity curve, trade entry and exit points on the price chart, and trade-

by-trade results in the Trade List table. If none of the saved strategies meet your

requirements, change the build objectives and conditions on the Build Metrics window to

address the deficiencies observed in the generated strategies. For example, if the drawdown

is too large, you could try increasing the weight for the drawdown metric or increasing the

weight for the correlation coefficient. Click the Build button to rebuild. If the Reset on Build

box is checked, the current population will be discarded, and the population will be

34

reinitialized randomly. If the box is unchecked, the saved strategies will be used to

reinitialize the population.

Step 11. Transfer the Code to Your Trading Platform

When you’re satisfied with the results in Builder, transfer the strategy code to your trading

platform for any additional testing, such as real-time tracking, and for trading. The code in

the Strategy Code window can be copied by right-clicking and selecting “Copy Strategy”. In

TradeStation or MultiCharts, open a new strategy window in the EasyLanguage editor,

choose a name, then paste the code into the empty strategy window. Finally, compile the

EasyLanguage code.

In NinjaTrader 7/8, right-click on the Strategy Code pane and select "Save NinjaScript

Strategy to File". Choose a name for the strategy or accept the default and save the strategy

to the folder Documents\NinjaTrader 7\bin\Custom\Strategy\ (for NT7) or

Documents\NinjaTrader 8\bin\Custom\Strategies\ (for NT8). Open the strategy in the

NinjaTrader 7 editor by selecting Edit NinjaScript from the Tools menu and click the

Compile button. In NinjaTrader 8, open the editor via the File menu. The strategy should

then be ready to back-test via the Strategy Analyzer.

In MetaTrader 4, open a new window in the MetaEditor, paste in the code from Builder, and

click the compile button. Alternatively, you can save the MetaTrader 4 code directly to a

.mq4 file by right-clicking in the code window in Builder and selecting "Save MT4 Strategy

to File".

In AmiBroker, in the Charts pane, right-click on the Systems folder and select "New" and

then "Formula". Enter a name then right-click on the name and select "Edit". Select "Paste"

from the Edit menu to paste the code into the edit window then click the save icon and,

finally, click the AFL icon to verify the code.

To test the strategy in TradeStation/MultiCharts, insert it into the corresponding chart, such

as the chart used to generate the price data file for analysis, and set the ”Maximum number of

bars study will reference” (in TradeStation, Format Strategies, Properties for All) to the

MaxBarsBack value listed in the Build Results table.

In MultiCharts, the value is entered under Format Signal, Properties ("Maximum number of

bars study will reference"). This ensures that the strategy has enough data to start calculating

the indicators at the beginning of the chart.

In NinjaTrader 7/8, this value is set by the strategy code and can be seen in the Strategy

Analyzer window ("Min. bars required" in NT7 or "Bars required to trade" in NT8).

In MetaTrader 4, select the strategy (Expert Advisor) on the Tester window (Settings tab)

and select the symbol and date range. For best results in MetaTrader, select "Every tick" as

the Model then click the Start button to run the back-test.

In AmiBroker, right-click on the strategy in the Systems folder of the Charts pane and select

"Analysis". On the Analysis window, reset the parameter values by clicking on the

Parameters icon and check the settings by clicking on the Settings icon. Finally, click the

Backtest icon to run the test.

Note: If you're pasting the strategy code over the code for an existing strategy, it will be

necessary to reset the input values before running the back-test. In TradeStation, delete the

strategy from the chart and re-insert it to reset the input values. In MetaTrader 4, this can be

done by clicking the Expert properties button on the Tester window and clicking the Reset

35

button on the Inputs tab. In AmiBroker, click the Parameters icon on the Analysis window

and click "Reset all".

To insure that you get the same results in the trading platform as in Builder, make sure that

the basic settings, such as trading costs and point value, are set correctly. For example, in

TradeStation, costs should be set to one-half the value in Builder since Builder deducts costs

on a round-turn basis, whereas TradeStation deducts costs per-side. Also make sure the start

and end dates of the chart are the same as in Builder and that the MaxBarsBack value in

TradeStation/MultiCharts is the same. Small differences may still occur, due primarily to

slight calculation differences. Because the series of trades in a back-test are rarely

independent from one another, when one trade exits at a different bar, it can cause

subsequent trades to enter and exit at different prices as well. See the section Common

Questions (Usage Topics) for more information on possible sources of difference between

the results in Builder and those in the trading platform.

To get help on any feature or command while using Builder, press F1 at any time.

The remaining chapters discuss the settings and features of Builder in detail.

Chapter 3
Symbols and Settings

Symbol Library
The Symbols pane, as shown in Fig. 3.1, contains the symbol library. In Builder, symbols

can include both price data symbols and symbols representing external equity curves. The

latter can be used to build strategies that work optimally with an existing market system or

portfolio, as represented by its equity curve. Both types of symbols are added to the program

in the same way. Equity curve symbols are discussed further in Equity Curve Symbols,

below.

Before market symbols can be added to the Build Symbols window for building strategies,

they must be added to the symbol library through the Symbols pane. The Symbols pane

organizes all the symbols in Builder in a series of folders arranged in a tree structure, similar

to the file system in Windows Explorer.

(a) (b)

Figure 3.1. (a) The Symbols pane contains the symbol library. (b) The right-click (context) menu

contains all commands that apply to symbols and folders.

The symbol library is stored in a separate file ("AB_SymbolLibrary.symlib") and is

independent of the project files. The symbol library is accessible whenever the program is

running, so that any symbol added to the library is available to any project. A back-up copy

of the symbol library file ("AB_SymbolLibrary_backup1.symlib", "

AB_SymbolLibrary_backup2.symlib", up to " AB_SymbolLibrary_backup10.symlib") is

automatically made at program start-up if the same file has not already been backed up.

37

Under current versions of Windows, the symbol library and backup copies are stored in the

folder C:\Users\user_name\AppData\Roaming\AB_SymbolLib_v30\, where user_name is

your user name. Under Windows XP, the path is C:\Documents and

Settings\user_name\Application Data\ AB_SymbolLib_v30\. The symbol library is saved

automatically whenever a change is made to it. Under normal circumstances, it should not be

necessary to use the backup copies. The Undo command (see below) can be used to revert

back to a prior state if changes are made to the library unintentionally, such as accidentally

deleting a symbol that you want to keep. However, commands cannot be undone once the

program is closed. For example, if you were to delete a symbol, close Builder, and later

decided you want to keep the deleted symbol, you could replace AB_SymbolLibrary.symlib

with one of the backup copies.

Any number of folders can be added below the root-level "Symbol Library" folder, which

cannot be changed. In each of the folders within the Symbol Library folder, any number of

sub-folders can be added. The default configuration includes folders named "STOCKS",

"FUTURES", and "FOREX". The name of any folder, including the default folders, can be

changed by clicking on the name twice or by clicking the folder once and selecting

"Properties" from the right-click (context) menu, shown above in Fig. 3.1b.

To add a folder, click the item below which you want to add the new folder and select "New

Folder" from the context menu. New symbols are added similarly by selecting a symbol or

folder in the tree and selecting "Add New Symbol" from the context menu. The new symbol

defaults to the properties of the selected symbol, if any. Double-clicking an existing symbol

or selecting "Properties" for a selected symbol opens the Symbol Properties window, shown

previously in Fig. 2.2 in Quick Start Steps and in Symbol Settings, below. Adding a new

symbol is discussed below. Symbols can be added to any folder, including the root folder.

Symbols can be moved from folder to folder by clicking and dragging or by using the Move

Up and Move Down commands of the context menu. Undo and Redo commands allow any

command from the context menu to be reversed. Up to 10 levels of undo are permitted. Other

commands for working with the symbol library include deleting a symbol (Delete or Del

key), plotting a symbol in a price chart (Plot Symbol), viewing the price data in a table (View

Data), and adding the selected symbol to the list of build symbols in the Build Symbols

window (Add to Build).

The buttons at the bottom of the Symbols pane (Add New Symbol, Properties, Plot Symbol,

Add to Build) provide one-click access to some of the more commonly used commands of

the context menu.

Note to users of prior versions of Builder: When the program starts up, it checks the

project file being opened to see if it contains a price data file that is not in the library. If it

does, the program will ask if you want to add the symbol to the library. This is designed to

make it easier to populate the symbol library from existing project files.

Obtaining Price Data

Builder can utilize price data obtained from any source provided the file is in a delimited text

format and can be formatted under the Data File Format window, discussed below.

TradeStation

For TradeStation users, the easiest way to obtain the price data file for use in Builder is to

save the data from a TradeStation chart window. This can be done through the Data Window.

To display the Data Window, go to the View menu in TradeStation and select Data Window

or, in TS 8 or above, right-click on a chart and select View Data Window. To save the price

38

data to a text file, click the disk icon on the data window, or, for TS 2000i, right-click and

select “Send to File”. In the Save-As dialog, select a file, then click the Save button. This

will save the price data for the chart window to the text file you’ve selected.

MultiCharts

In MultiCharts, select "Export Data" from the File menu to save the chart data to a text file.

NinjaTrader 7/8

In NinjaTrader, use the Export tab on the Historical Data Manager window to save the data

to a text file. In NinjaTrader 8, select Export -> Historical Data from the Tools menu. The

resulting file will contain 1-minute bars in semi-colon delimited format. Check the semi-

colon delimiter box on the Data File Format window after selecting the file in Builder. Once

in Builder, the bar type and size can be changed in the Market Symbols table of the Build

Symbols window, as explained in Build Symbols, below.

MetaTrader 4

In MetaTrader 4, go to the Tools menu and select History Center. Select the symbol from the

list at left and click the Export button. On the Data File Format window, click the Specify

Data Format button to select the formatting options for the date and number formats. Once

selected, it may be saved for reuse in the future.

Third-Party Data Providers. If you obtain your price data from a data vendor, the vendor

should have a software program that can be used to export the data to different formats and

bar sizes. Builder requires data in a text file format, such as csv or txt files. Once in Builder,

the bar type and size can be changed in the Market Symbols table of the Build Symbols

window, as explained in Build Symbols, below.

Equity Curve Symbols

In addition to price data, you can define symbols representing externally supplied equity

curves. If this special type of symbol is included as one of the build symbols, the program

will add the equity changes calculated from the equity curve data to the bar by bar equity

values from the strategy to generate a composite equity curve. The performance metrics are

then based on the composite curve. If, for example, the external equity curve represents an

existing portfolio, Builder will produce strategies based on the combined performance of the

existing portfolio and the generated strategies. The resulting strategies will tend to be optimal

in combination with the supplied equity curve. This provides a way to build strategies that

maximize the portfolio results.

A few points regarding equity curve symbols are worth noting:

• The data don’t have to represent bars or match the interval size of the price data being

used. For example, if you’re building on five-minute bars, it’s not necessary to specify

an equity value for every five minute bar. However, for the highest accuracy, an equity

value should be specified for each date/time for which there’s a new equity value.

• The only requirement is that there be a date/time value and an equity value for each row

of data in the file. The “close” field should be selected on the Data File Format window

to represent the equity values. Optionally, you can also specify the high and low values

of equity at the specified date/time by specifying columns as the “high” and “low”.

• The date range should overlap the date range of the selected price data symbols when

building, although the dates don’t have to overlap exactly. The equity changes from the

equity curve symbol will be added to the calculated equity curve for the strategy where

the date/times overlap.

39

• Multiple overlapping or consecutive equity curve symbols can be included in the same

build. The program will combine them based on their equity changes and date/time

values.

• The equity curve pane will automatically display the detailed equity curve when

building with an equity curve symbol. The detailed equity curve is based on the bar-to-

bar equity values and plots the equity versus date, rather than trade number. If the

display is changed to the closed-trade equity curve versus trade number, the curve will

be based solely on the strategy trades and will not include the external equity curve(s).

See the section Equity Curve Window in Build Results.

• When building with an equity curve symbol, it's recommended that the correlation

coefficient be included as one of the build metrics. The correlation coefficient is based

on the detailed equity curve, which includes the external equity curve(s). Maximizing

the correlation coefficient in this case will tend to result in strategies that combine well

with the external equity curve(s) so that the portfolio results are optimal.

• Equity curve symbols can be evaluated by themselves. If one or more equity curve

symbols are the only symbols selected on the Evaluation Symbols window (i.e., no price

data symbols are selected), clicking the Evaluate button will compute the metrics that

are obtained from the equity curve, including the total net profit, worst-case drawdown,

annual return, and so on. If multiple equity curve symbols are included, the metrics will

be calculated from the composite equity curve for all symbols. All metrics based on

trade results, such as the average trade and profit factor, will be zero or undefined when

equity curve symbols are evaluated by themselves. It's not possible to build trading

strategies based solely on external equity curves because without price data the results

would be the same for every strategy.

Building a Strategy to Trade with an Existing Portfolio or Market System

The following steps can be taken to build a strategy that will be optimally diversified with

respect to an existing portfolio or market system:

1. Save the equity curve for the existing portfolio to a text file. The file should contain a

list of dates and equity values, one per line. If the portfolio or market system is available

in Builder, you can obtain the equity curve file by right-clicking the equity plot and

selecting "Save to Text File".

2. Add the equity curve saved in step 1 to the symbol library as an equity curve symbol.

This is done by using the "Add New Symbol" button, selecting the equity curve file, and

setting the symbol type to "Equity Curve" on the Symbol Properties window. The equity

values should be assigned to the "close" field on the Data File Format window.

3. On the Build Metrics window, add the correlation coefficient as a build metric in

addition to any other metrics, such as net profit, that you would normally use. This will

ensure that the equity curve for the portfolio, combining the equity curve for the strategy

being built with the external equity curve symbol, will be as straight and uniform as

possible. The build process will optimize the strategies for the portfolio equity curve,

which will include the external equity curve symbol. The resulting strategies will

therefore be optimal when traded in combination with the external equity curve.

For more information, please refer to the article http://www.adaptrade.com/Newsletter/NL-

OptimalStratDiverse.htm. (Note: This article was written before the equity curve symbol

feature was added to Builder, so it uses a slightly different approach, but the basic concepts

are the same.)

Adding a Symbol

As explained above, symbols are added to Builder through the symbol library. Clicking the

Add New Symbol button on the Symbols pane opens the "Select Symbol File" file selection

40

window. This is a standard Windows file selection dialog that allows you to select a text file

of price data or data for an external equity curve. Each line in the file should specify the data

for a separate date/time, which should be ordered consecutively. Click the Open button to

bring up the Data File Format window (see below), which allows you to specify the

formatting for the selected file.

After entering the formatting and clicking Ok, the Symbol Properties window will be

opened, as shown in Symbol Settings, below. This is where all the properties describing the

symbol are entered. Click the name of each property to display a description at the bottom of

the properties window. For price symbols, data for the following properties should be

entered: Symbol (i.e., name or label for symbol), Bar Type, Bar Size (if applicable), Session

Start Time, Session End Time, and Point Value. Each of the symbol properties is described

in detail in Symbol Settings. The symbol and description fields default to the file name

without the file extension. If the symbol represents an external equity curve, set the Symbol

Type property to "Equity Curve". This will limit the number of properties to the ones needed

to specify an equity curve symbol.

To change the text file associated with the symbol, click the "..." button in the Data File

Name property. This will open the "Select Symbol File" dialog window, which will allow

you to select a new file of data. To change the formatting of the data file, click the "Data File

Format..." button, which will open the Data File Format window.

Data File Format Window

The Data File Format window is used to tell Builder how to read and interpret the data file.

The column headings identify the type of data contained in each column, which can be one

of the following: date, time, open, high, low, close, volume, up-tick volume, down-tick

volume, indicator, or "don't read/ignore". At a minimum, a price file should contain columns

for the date and the closing price of each bar. To take advantage of all the features of Builder,

a price file should contain the date, time, open, high, low, close, and volume (or up-tick and

down-tick volumes). If the date and time are together in one field (e.g., 11/5/2012 13:15 or

20090531 13:15), the field should be labeled "date" and no "time" field should be present.

Figure 3.2. The Data File Format window allows you to specify the format of the file of price data.

41

For an external equity curve, each line in the file should consist of the date and time and the

corresponding equity value. The equity value should be labeled as the “close”. Optionally,

the high and low equity values may be included on each line by labeling them as the “high”

and “low” prices. The high and low equity values are used in calculations, such as for the

maximum adverse excursion and drawdown, that are based on intra-bar equity. If the high

and low equity values are not provided, the closing equity value is used instead. Any column

labeled with a heading other than the date, time, close, high, or low will be ignored for an

external equity curve.

Builder is designed to read data files in several text file formats. An example of this data

format, as obtained from the TradeStation Data Window, is shown below.

"Date","Time","Open","High","Low","Close","Up","Down"

06/15/2009,0640,504.60,505.10,500.90,503.00,3655,3577

06/15/2009,0650,503.00,503.80,496.60,497.60,5245,6854

06/15/2009,0700,497.70,499.10,496.70,499.00,2275,2029

06/15/2009,0710,498.80,498.80,497.00,497.80,1980,2202

06/15/2009,0720,497.90,498.70,496.50,497.30,2153,2274

06/15/2009,0730,497.20,497.60,496.60,497.00,1453,1411

These data are stored in comma-delimited format, in which commas separate the different

fields (date, time, open, high, low, etc.). Other field delimiters can be selected by checking

the boxes below the table. Builder can read files delimited by commas, semi-colons, tabs, or

spaces. When a new delimiter is selected, the table will be redrawn. If you're not sure how

your data file is delimited, try the different delimiters until the fields are displayed in separate

columns.

The “Up” and “Down” fields are the up and down tick data for intraday bars. For other bar

types, a single volume field will be present. Builder does not use open interest.

To change the label for any column, click on the column heading and select the appropriate

label from the pop-up window. Select "don't read/ignore" to have the program skip over a

column of data; this corresponds to a blank column heading.

If the volume is not specified, it is set to zero. If any price field is not specified, it is set to the

closing price. For example, if only the close is available, the open, high, and low are set to

the close on each bar.

If the price file includes columns for both the up-tick and down-tick volume, check the box

"Set volume to sum of up-tick and down-tick volumes" below the table of price data to

combine the two volume fields for the total volume. Generally speaking, the two fields

should be combined in order for volume-based indicators to evaluate properly. If it appears

that a volume-based indicator is not evaluating properly, try deselecting this option.

The first line of the price file can contain an optional line of text labels, which is skipped

over if found.

Clear Column Headings Button

The Clear Column Headings button removes all column headings from the table of price data

and removes all custom indicator specifications from the table of custom indicators. This

button can be used to initially clear the default column formatting prior to setting up the

column headings and custom indicator settings. If you inadvertently remove key settings,

42

such as custom indicator details, click the Cancel button to close the window without saving

any changes.

Save File Format Button

Once you've selected the formatting, such as the field delimiter and the column labels, you

can save all your selections for later reuse by clicking the Save File Format button. This will

save all your settings in a file, which will then be available for future projects via the drop-

down menu labeled "Saved File Formats". The saved formatting settings include those for

the custom indicators and data formats, described below. If you have previously saved the

file format, you can select it from the drop-down menu. Selecting the option "None" on the

drop-down menu will revert the formatting back to the original file format, so if a new

format has been selected or the column formatting has been cleared, selecting "None" from

the drop-down will restore the formatting.

Specify Data Format Button/Data Format window

By default, Builder reads the data file by assuming the data follow the date and number

conventions of the "English (United States)" locale, which means dates are assumed to be

given as MM/DD/YYYY, prices use a comma as the digit grouping symbol and a period as

the decimal symbol (e.g., 1,000.01), among other conventions. If the data file employs other

conventions, different formatting options can be selected using by clicking the Specify Data

Format button, which opens the Data Format window, shown below in Fig. 3.3.

Figure 3.3. The Data Format window allows you to specify the format for reading dates and

numbers in the data file.

43

First select either "Use locale" or "Use custom format". For example, to accommodate dates

in the format DD/MM/YYYY with numbers in US English format, you can select "Use

locale" with the selection changed to "English (United Kingdom)". For more complicated

formats, such as the ones often found when saving price data from MetaTrader 4, select "Use

custom format".

The custom format selections consist of three sections: date format, time format, and number

format. Select the options from those available in the drop-down menus. For example, the

date separator can be a slash (/), period (.), dash (-), space, none, or custom. If custom is

chosen, enter the custom date separator in the corresponding box labeled "Custom". When a

new selection is made, the examples provided in the labels for each section change to reflect

the new selection. For example, if "period (.)" is chosen as the date separator, the date

example will change to "12.31.2020".

After selecting all the options in all three sections to match the data in your file, you can

optionally save the formatting by clicking the Save Format button. This will save the

formatting options in a file, which can be accessed via the drop-down menu next to the Save

Format button the next time you open the Data Format window.

To return to the Data File Format window, click the OK button to keep your selections or the

Cancel button to discard them.

Custom Indicators

Builder can include custom indicators in the build process. To use this feature, it's necessary

to provide a column in the price file with the custom indicator value for each bar. In

TradeStation and MultiCharts, this can be done by plotting the indicator on the price chart

and saving the chart data to a text file. This adds a column to the text file with the indicator

values.

To include the indicator in the build process, click on the column heading in the "Data file

contents" table of the Data File Format window and select "Indicator" as the column heading.

This will label the corresponding column as "Indicator 1", "Indicator 2", etc., as shown in

Fig. 3.2. This also adds an entry to the Custom Indicators table, located below the table of

price data in the Data File Format window.

Builder needs to know two things about each custom indicator you want to use: (1) the code

statement needed to calculate the indicator values when the strategy is run, and (2) the

return type of the indicator. For example, in Fig. 3.2, indicator #1 uses the code statement

"MyCustInd1(C, 15, 100, 1)." This is the code that will be included in the strategies

generated by Builder in which the custom indicator is used. This code should correspond to

the indicator values in the price file. For example, evaluating the code statement

MyCustInd1(C, 15, 100, 1) in a strategy should produce the values shown in the price file

under the column labeled Indicator 1.

Note: For MT4, when a custom indicator is added to the strategy code, it has the form

iCustom(...., "name", input1, input2, ..., 0, 1). The input values will be copied to the iCustom

function from the text between the parentheses in the code statement; e.g., "C, 15, 100, 1" for

Indicator 1 in Fig. 3.2. However, any price inputs should be specified as PRICE_OPEN,

PRICE_HIGH, PRICE_LOW, and PRICE_CLOSE, in place of O, H, L, and C, respectively.

For example, if Indicator 1 above was intended for MT4, it should be written as

"MyCustInd(PRICE_CLOSE, 15, 100, 1)".

44

Note: If a custom indicator cannot be represented in the target language using a single

function call, there are two options for using the custom indicator in Builder: (1) re-write the

indicator so that it's values are generated by a single function call, or (2) edit the strategy

code generated by Builder after the build process is complete.

The return type for Indicator 1 in Fig. 3.2 is "Price". This means the values produced by the

indicator are equivalent to the symbol's price, such as the close, open, high, etc. The table

below lists the different allowable return types with examples of common indicators that

return that type.

Return Type Definition/Examples

Price Any market price; C, Average(C, N), Highest(L, N), Keltner

Price difference Difference between two prices; MACD, momentum, H - L, ATR

Price rate of change Ratio of two prices (price 1/price 2); ROC

Oscillator, 0 - 100 Indicators scaled to return between 0 and 100; FastK, SlowD, RSI

Oscillator, -50 - +50 Indicators scaled to return between -50 and +50

ADX ADX, DMI

Volume volume, Average(volume, N)

Day of week 0 for Sunday, 1 for Monday, etc.

Time of day HHMM format; e.g., 1425 for 2:25 pm

True/false 0 for false, 1 for true

Custom User-specified min to max range; e.g., -0.1 to +0.4

The return type is used by Builder to determine which indicators can be meaningfully

compared to other indicators. It's necessary to specify the correct return type in order for the

program to properly incorporate the custom indicator into the logical conditions for entry and

exit.

For each custom indicator in the table of custom indicators, select the indicator in the table

and enter the code statement in the edit field to the right of the table and select the return

type; see Fig. 3.2. For any indicator with a custom return type, enter the minimum and

maximum values that the indicator can return. It's best to avoid selecting a custom return

type unless none of the built-in types apply because this will limit the ways in which the

custom indicator can be used in the logical conditions.

Note for True/False Return Types: Custom indicators returning a true/false value should

return 0 for false and 1 for true. To convert these values to logical true/false, Builder

compares the value to 1. For example, in NinjaScript, MQL4, or AFL, a true/false input

value would be converted to true/false as follows: N1 == 1 (in EasyLanguage, it would be

N1 = 1). So, if N1 is 0, the preceding statement would return false, and if N1 is 1, it would

return true. The same approach applies to variables assigned to true/false custom indicators;

e.g., VarL1 == 1 means "VarL1 is true" and VarL1 != 1 means "VarL1 is false", in which

VarL1 is the custom true/false indicator. This implies you might see statements such as

CondL1 && (VarL1 == 1), CondL1 = VarL2 != N1, CondS1 == (VarS2 != 1), (VarL4 != 1)

|| (VarL5 == 1), and so on. Currently, no built-in indicators in Builder return true/false, so

this only applies to custom indicators returning true/false.

The maximum look-back length required to evaluate the custom indicator can be entered

below the fields for the custom return values. For example, in Fig. 3.2, the first custom

indicator looks back a maximum of 100 bars. This is the number of bars of data needed to

evaluate the indicator and should be entered as the Max Look-back Length. The look-back

lengths are used to calculate the Max Bars Back value, which is needed when inserting the

strategy into a chart in the trading platform. Similarly, you can enter the number of inputs

that the custom indicator uses, which is used in the calculation of the complexity metric.

45

Including Other Symbols Using Custom Indicators

In prior versions of Builder, if you wanted to include other price series in the build process,

such as using 10-year note prices when building a strategy for the E-mini S&P, the other

price series needed to be defined as a custom indicator with a custom return type. This

enabled statements such as XAverage(ZLTrend((Close of data2), NL3), NL4) <=

Average((High of data2), NL1), in which "Close of data2" and "High of data2" were custom

indicators. Starting in version 2.5, this is no longer necessary because Builder handles

secondary data series natively as part of the build process; see Build and Evaluation

Symbols, below.

Note: Once a custom indicator has been included in a built strategy, changing the market and

re-evaluating the strategy may cause errors if the data columns for the same custom

indicators are not available in the new price file.

Note: If multiple markets (price files) are selected as primary data series in the Market Data

table on the Build Symbols window and one file contains custom indicators, then all price

files selected in the table as primary data series must contain the same custom

indicators (i.e., the same columns and specifications). Otherwise, the build process will fail

when trying to apply the custom indicator(s) to markets for which the required data are not

found.

Symbol Settings

As explained in Adding a Symbol, above, when adding a new symbol to the symbol library

or viewing the properties of an existing symbol, the Symbol Properties window is displayed,

as shown in Fig. 3.4.

This is where all the properties describing the symbol are entered. Click the name of each

property to display a description at the bottom of the properties window, as shown in Fig. 3.4

for Cost Type. Most properties can be edited directly by clicking them.

Please Note: When working in the Symbol Library, this window represents the intrinsic

properties of the symbol. Once defined, these properties should not need to be changed.

When building or evaluating strategies, different values for the bar type, bar size, and trading

costs can be specified on the Build Symbols and Evaluation Symbols windows through the

entries on the Market Symbols table to suit your purposes at that time. Doing so will have no

effect on the properties entered via the Symbol Library. The Symbol Properties window can

also be opened through the Build Symbols and Evaluation Symbols windows by double-

clicking on the symbol entered in the Market Symbols table. In this case, changes made to

the settings on Symbol Properties will not affect those in the Symbol Library.

Symbol

A text label can be entered for the Symbol setting to help identify the market and to provide a

label for use in displaying results. Any valid text string can be entered. The symbol is used in

the build report, trade list, and for other display purposes. The symbol name is also used

when multiple data series have been specified to determine if two symbols in different series

are the same.

Description

Enter a text label for the Description setting to help identify the market.

46

Symbol Type

If the symbol represents an external equity curve, set this property to "Equity Curve".

Otherwise, it can be set to "Stocks", "Futures" or "Forex" for price symbols. When this

property is set to Equity Curve, the only other properties displayed on this window are

Symbol, Description, Data File Name, First Available Date, and Last Available Date, which

are the only applicable properties for an external equity curve.

Data File Name

The Data File Name specifies the name of the text file of data. Please see Adding a Symbol,

above, for details.

Figure 3.4. Symbol Properties window.

First Available Date, Last Available Date

The first and last available date properties display the date range for data read from the price

file. These properties are for informational purposes only; they cannot be edited. If the

program is not displaying the full date range in the price file, click the Reload button (see

below) to reread the file and reset the available date range. To change the range of dates used

for building or evaluating a strategy, use the date controls on the Build Symbols or

Evaluation Symbols window.

Bar Type, Bar Size, Range Bar Size, Ticks per Bar

Clicking on the Bar Type entry will open a pull-down menu with the following choices:

Intraday, Daily, Weekly, Monthly, Tick, Range, Unknown. Intraday bars are specified in

minutes, such as 5 min bars or 60 min bars; the smallest allowable value is 1 minute. The Bar

Size setting, which is only shown when the Bar Type is Intraday, should contain the number

of minutes for intraday data. Range bars represent trading within a specified point range,

such as five points. All bars in a range bar chart have the same range. For range bars, a

Range Bar Size setting will be available, which should be set to the high-to-low range of the

bars in points. For tick bars, a Ticks per Bar setting is displayed, which is the number of ticks

composing each bar; e.g., 100 for 100-tick bars. The number of ticks per bar is only used in

47

AmiBroker code for secondary data series and can be excluded if desired if not building for

the AmiBroker platform.

The Bar Type and, where applicable, Bar Size (for intraday data) or Range Bar Size (for

range bars) should match the data in the file. Builder will try to properly infer the bar type,

bar size, and session times from the data file. If any of these are incorrect, they should be

manually corrected. For example, if the data in the price file represent 5 min bars, the Bar

Type should be "Intraday" and the Bar Size should be 5.

The Daily, weekly, and monthly Bar Type options represent bars that span a day, week, and

month, respectively. Tick bars are built up from a specified number of transactions or ticks

and are typically used in futures trading. A single tick represents a transaction that took place

at a certain price and time. It could be for any number of contracts. Single-tick data is not a

valid input option in Builder. Tick bars contain multiple ticks so that each bar has an open,

high, low, and closing price.

Session Start Time, Session End Time

The Session Start Time and Session End Time properties specify the trading session times.

Only one session is defined in Builder for each symbol, although a combined session, such as

day-plus-evening, can be used if the session times encompass both sessions. When accessing

the Symbol Properties window through the Symbol Library, these times should exactly

match the times found in the price data file. An incorrect session time can affect the end-of-

day exit. Builder does not perform time zone conversion.

When accessing the Symbol Properties window through the Market Symbols table of the

Build Symbols or Evaluation Symbols window, the session times can be changed without

affecting the settings in the Symbol Library. For example, if the price data file contains data

for session times spanning 24 hours, as with typical forex symbols, the session times could

be changed through the Build Symbols window to daytime hours, such as 8:30 am to 5:30

pm. However, it's important to make sure the data used in the trading platform exactly match

the settings made in Builder. In this example, the strategy should be executed on data that use

session times of 8:30 am to 5:30 pm, rather than the original, 24-hour data. Otherwise, much

different results may be found in the trading platform than in Builder. To restrict trades to a

range of times, it's usually better to use the trade entry and exit time range options under

Strategy Logic, rather than changing the session times.

Point Value

Each price symbol should have a valid point value. For example, the E-mini S&P 500 futures

have a point value of $50. This is the value that is multiplied by price to determine the value

per contract. For stocks and forex, the point value should be set to 1. Note that when forex

symbols have a point value of 1, the position size is typically 10,000 or 100,000 for one lot.

The point value property has a default value of 1.

Tick Size

The tick size is the smallest allowable price change for the symbol, such as 0.25 for the E-

mini S&P 500 or 0.01 (1 cent) for US equities. Builder will infer this from the price data file.

If it's incorrect, it can be changed here.

Bid/Ask Spread

The bid/ask spread is the difference between the current price buyers are willing to purchase

the instrument for and the price sellers are willing to sell it for. The bid is the lower price,

whereas the ask is the higher price. Buy orders are always filled at the ask, and sell orders are

always filled at the bid. A price chart displays the bid price only. In Builder, the bid/ask

spread is only used if the Order Fill Rule option on the Evaluation menu ("Use Bid/Ask

48

spread to determine fills") is checked. If so, market buy orders will be filled above the

apparent market price (based on the chart), whereas market sell orders will be filled at the

price seen on the chart. The bid/ask spread is part of the cost of the trade.

The bid/ask spread is intended for forex trading and is not typically used for trading futures.

When developing forex strategies for MetaTrader 4, this option should be used because

MetaTrader 4 uses the bid/ask spread when evaluating strategies. This is consistent with the

common practice in forex trading of paying for the trade through the spread rather than

paying the broker a fixed commission.

If the bid/ask option is selected, Builder also uses the bid/ask spread to determine if a

pending order is filled. For example, a buy stop order is only filled if the ask price, which is

above the chart price (bid), touches the stop price. If, for example, the price bar on the chart

just touches the stop price, it may appear that the order should be filled, but Builder won't

show the historical trade as filled unless the ask price reached the buy stop price. Similarly, a

buy limit order will not be recorded as filled unless the ask price reaches down to the buy

limit price. Sell stops and limits are filled at the bid, so, unlike buy orders, their fill prices

directly correspond to the chart prices. This is also how MetaTrader 4 determines fills.

Note: In addition to the bid/ask spread, MetaTrader 4 applies a minimum price distance to

determine if an order can be placed. If a pending order (stop or limit) is too close to the

market at the time it's placed, the order will be rejected. This is based on the idea that there

won't be sufficient time to place the order before the market moves through the order price.

Builder doesn't reject such orders, which can sometimes cause a discrepancy in back-testing

between Builder and MetaTrader 4.

Price Band Size

Chicago Mercantile Exchange (CME, www.cmegroup.com) futures use price bands to

determine whether limit orders are acceptable. If a limit price is outside the price band, the

limit order will be rejected. The size of the price band is given in points, such as 6 points for

the E-mini S&P 500 futures. If the price band option under Limit Order Options (Evaluation

menu) is selected ("Place limit order only if order price is within market's price band"), a

limit order will only be placed if the order price is within the number of points of the bar's

close given by the price band size.

Trading Costs, Cost Type

Trading costs are specified according to the Cost Type. There are three Cost Type options:

Amount per Share, Amount per Trade, and Percent of Trade. If the selected cost type is

"Amount per Share", the trading costs are calculated by multiplying the entered cost value by

the number of shares. For the "Amount per Trade" cost type, the trading costs are simply the

entered value. If "Percent of Trade" is selected as the cost type, the trading costs are

calculated by multiplying the entered value as a percentage by the trade value, which is the

product of the entry price, position size, and point value. In all cases, the calculated trading

costs represent the total trading costs (commissions, fees, and slippage) deducted from each

trade on a round-turn basis (i.e., deducted once per trade). Note that TradeStation typically

deducts trading costs on a per-side basis, so you should use one-half the trading cost amount

in TradeStation that you enter into Builder.

Trading costs should always be included though they need not be precise. The purpose is to

ensure the strategies generated during the build process overcome trading costs. Entering a

slightly higher cost value than anticipated in reality may guide the process towards more

robust strategies. However, setting trading costs too high may prevent the program from

finding viable strategies that have a low average trade profit/loss.

49

This property represents the default value for costs that is shown when adding the symbol to

the Build Symbols window for building strategies or the Evaluation Symbols window for

evaluating strategies. The cost value can be changed through the Market Symbols table of the

Build Symbols and Evaluation Symbols windows.

Reload Button

The Reload button on this window scans the price file for the first and last available dates

and updates those fields.

Data File Format Button

The Data File Format button opens the Data File Format window, which enables you to edit

or change the format specifications for the data file, as explained in Adding a Symbol.

View Data Button

The View Data button opens a tabular display of the contents of the symbol’s data file. If the

symbol represents an external equity curve, the View Data window displays the equity curve

changes, rather than the equity curve values. This has no effect on the file contents, which

are unchanged by the program.

Build and Evaluation Symbols
When building trading strategies in Adaptrade Builder, the strategies are applied to the

market symbols in the Market Symbols table of the Build Symbols window, as shown in Fig.

3.5. Similarly, when evaluating strategies separately from the build process, the symbols for

evaluation are selected through the Evaluation Symbols window, as shown in Fig. 3.6. These

two windows are largely the same and work mostly the same except that the

training/test/validation settings are not available on the Evaluation Symbols window since

those settings only apply when building strategies and not when evaluating strategies that

have already been built.

Figure 3.5. The Build Symbols window is used to specify the markets and settings for building

strategies.

50

Figure 3.6. The Evaluation Symbols window is used to specify the markets and settings for

evaluating strategies separately from building.

Once symbols have been added to the Market Symbols table of the Build Symbols window

(see below), the data series for each symbol should be set using the pull-down menu in the

Series column. The symbol or symbols on which the strategies will trade are the "Primary"

data series. All other series are "secondary" and are numbered from 2 to as high as 20.

Symbols are added as primary by default, and any number of primary symbols can be added.

When there are multiple primary symbols, the strategies are evaluated on each such symbol,

the trades from all markets are combined, and the results are reported as a portfolio.

The secondary symbols provide other data series for the strategy logic. For example, the

primary symbol could be the E-mini NASDAQ futures, and a secondary series could be a

forex symbol, such as EURUSD. This would enable the program to include indicators

applied to EURUSD in addition to ones involving the E-mini NASDAQ.

Secondary symbols can be on different timeframes than the primary market(s), either larger

bar sizes or smaller ones.* Also, the same symbol can be selected as both a primary and

secondary symbol but with different timeframes. For example, you could select 5-minute

bars of AAPL as the primary data series with daily bars of AAPL as data series 2. If the two

symbol names are identical (i.e., both are shown as "AAPL" under the Symbol column), then

the program may generate logic that compares indicators between the two series, such as

"Average(C, N1) < Average(C, N2) of data2". Comparisons between different series are only

allowed if the symbol names are the same.

* The only exception is for AmiBroker code, which generally requires the primary market to

be a smaller bar size than any secondary symbol. If this is not the case and AmiBroker has

been selected as the code type for building, a warning message will be displayed when the

build process is started.

If there are multiple primary symbols and one or more secondary symbols, the same

secondary symbols will be used when evaluating/back-testing the strategy on each primary

symbol. For example, you might have a small basket of stock symbols, each of which is a

primary symbol. In addition, you could have a stock index and an interest rate as secondary

symbols (data series 2 and 3). In that case, when the strategy is back-tested (e.g., during the

build process), it will be evaluated on the first stock symbol using the interest rate and stock

51

index symbols, then on the second stock symbol using the interest rate and stock index

symbols, and so on for each of the primary symbols.

Note: When executing strategies in the trading platform, the same data for all series must be

available in the same configuration as specified in the Build Symbols window. For example,

for TradeStation and MultiCharts, secondary data series must be plotted on the chart of the

primary symbol in the correct order as data2, data3, etc.

Tip: When the Evaluation Symbols window is first opened, it lists the same symbols as in

the Build Symbols window. If the symbols in the Build Symbols window are later changed,

the symbols in the Evaluation Symbols window may no longer match those in the Build

Symbols window. If you want to easily change the selections in the Evaluation Symbols

window to match those in the Build Symbols window, simply open the Evaluation Symbols

window, drag the mouse across all symbols in the table to select them, click the Delete

button, then close the window and reopen it. This will reset the symbols in the Evaluation

Symbols window to those in the Build Symbols window.

As explained below, any symbol in the symbol library can be added to the Market Symbols

table via the Add button. Once symbols have been added to the table, you can change the bar

type, bar size, and costs per share settings as desired for purposes of building or evaluating

strategies. Changes here have no effect on the symbol's properties, which can be seen by

double-clicking the symbol to open the Symbol Properties window. Symbols in the Market

Symbols table are copies of those in the symbol library, so any change to the settings made

here has no effect on the properties in the symbol library.

Note: For equity curve symbols, the Bar Type, Bar Size, and Costs Per Share entries will be

shown as “NA” since these properties are not applicable to equity curve symbols.

To change the symbol settings to the values you want to use when building or evaluating a

strategy, simply click on the entry in the Market Symbols table. For example, if the data file

contained 30-minute bars, you could change the bar type to daily bars for building and/or

evaluating strategies on that time frame.

Any valid bar type selection can be made, provided the price data in the file can be converted

to the selected type. Price data provided as 1-minute intraday bars allow for the most

flexibility because they can be converted to any other intraday size, as well as to range bars,

daily, weekly, and monthly bars. No data type can be converted to tick bars since none of the

other data types includes the number of ticks in the bar.

The program will attempt to convert the available data to the selected bar type and will

display a warning message to the Messages window if the conversion may not be accurate.

For example, if the price data are provided as tick bars and the selection is for 5-minute bars,

there is no way to guarantee that accurate 5-minute bars can be constructed because the tick

bars may not be smaller than 5-minute bars and/or the tick bars may not close at the precise

closing time of the 5-minute bars. As another example, converting from 3-minute bars to 10-

minute bars will not be accurate because there is no even multiple of 3-minute bars that can

be used to construct a 10-minute bar. It's the user's responsibility to make sure the selected

data settings are sufficiently accurate and that they match the data used in the target

platform when executing a strategy in real time.

Note: When selecting the range bar size for range bars, the size should be large enough

compared to the interval of the available data to capture the normal oscillations of the data.

For example, if the available price data consist of 5-minute bars, the size of the range bars

52

should be as large as the normal range of movement that occurs within 5 minutes. Otherwise,

more range bars will be formed in real time than in back-testing.

Please note that the Symbol field in the Market Symbols table is a property of the symbol, so

it cannot be changed directly in the table. If you want to change the symbol label, double-

click on the symbol to open the Symbol Properties window. Similarly, the Available Dates

field is informational only; it shows the available dates in the price data file. To change the

date range for building or evaluating strategies, use the date/calendar controls.

Add button

To add a symbol to the Market Symbols table, either use the Add to Build command or

button in the Symbols pane or click the Add button below the Market Symbols table, as

shown in Figs. 3.5 and 3.6. Clicking the Add button opens the Select Symbols window

shown in Fig. 3.7. This window displays all available symbols in the symbol library. You can

select multiple symbols by dragging the mouse across the symbols or by using the Ctrl-Click

or Shift-Click key/mouse combinations. The selected symbols will be added to the Market

Symbols table.

Figure 3.7. The Select Symbols window allows you to add one or more symbols from the symbol

library to the Market Symbols table of the Build Symbols or Evaluation Symbols window.

When multiple markets are in the Market Symbols table, any or all of the markets in the table

can be selected by checking the box in the Include column for the respective market. For a

market to be included in the build process, either as a primary or secondary data series, the

box in the corresponding Include column must be checked. Any unchecked symbols will be

ignored by the build process.

Delete Button

Symbols can be deleted from the Market Symbols table either by clicking the Delete button

or by pressing the Del key.

Plot Symbol Button

To create a price chart displaying the selected symbol in the Market Symbols table, click the

Plot Symbol button.

53

Set Properties Button

To set the properties for multiple symbols together -- for example, to set the trading costs to

$5 for all selected symbols -- select multiple rows in the table and click the Set Properties

button.

View Data Button

Click the View Data button to display a window listing the data that have been read. The

View Data window displays the data in the format selected in the Market Symbols table. For

example, if the data file contains 1 minute bars, but the Bar Type in the Market Symbols

table has been changed to Range, range bars will be shown in this window.

If the symbol represents an external equity curve, the View Data window displays the equity

curve changes, rather than the equity curve values. This has no effect on the file contents,

which are unchanged by the program.

This window also allows you to save the data to a csv (comma-delimited text) file via the

File menu or copy the data to the clipboard via the Edit menu. If the Copy command is

chosen, the data will be copied in tab-delimited format, which permits it to be pasted directly

into a spreadsheet.

Date Range Settings

The Build Symbols and Evaluation Symbols windows also include controls for changing the

start and end dates and times for analysis. To change the start and end dates for building or

evaluating a strategy, click on the calendar controls or select the part of the date or time you

want to change and type in the new value. To change the year, enter the last two digits only.

The Build Symbols window includes controls for changing the percentage of data used for

training, test, and validation. Move the sliders to change the percentage of the date range

allocated to each segment. The training data are used in building the strategy. Test data are

used in evaluating the build process while it's ongoing. Data in the validation segment are

used for evaluating the strategies after building. The validation segment is "out-of-sample",

which means the data is not used in the build process, and the results on this segment

therefore provide an objective test of the strategies.

As an alternative to the slider controls and to provide more precision in setting the segment

boundaries, there are date/time controls for the end of the training and test segments.

Changing the date and time for either segment will redefine the end of the segment, inclusive

of the chosen values. The slider positions and percentages will be updated after a change is

made to the control. The validation segment does not have a date/time control because it's

defined as the remainder of the total period following the training and test segments.

The check box below the slider controls allows you to specify whether the test period follows

the training period or precedes it. Leave the box unchecked if you want the training period to

come first or check the box if you want the training period to follow the test period. The

validation period is always the most recent segment of data.

Builder stores the dates over which the strategies were built (i.e., training, test, and

validation) in the project file (.gpstrat). Once the strategies in a given project file have been

built, these build dates cannot be changed unless you rebuild the strategies. If you change the

date range on the Evaluation Symbols window after building and then evaluate a strategy

(i.e., by selecting Evaluate from the Evaluation menu), Builder will label the different

segments of the equity curve as "OOS Pre", "In-Sample", and "OOS Post". OOS Pre

corresponds to the portion of the selected date range, if any, that precedes the date range used

54

in building (training, test, and validation). In-Sample corresponds to the date range used in

building, and OOS Post corresponds to any data following the date range used in building.

If multiple markets have been selected in the Market Symbols table, the date range is

restricted to the range of the primary markets since those are the markets on which trading

takes place. The default dates shown in the calendar controls represent the earliest starting

date and latest ending date over all selected primary markets.

Chapter 4
Price Charts

Creating and Using Price Charts
Project files in Adaptrade Builder can contain one or more price charts, which are shown in

tabbed windows, as illustrated in Figs. 1.1 and 2.1. There are two ways to add a price chart to

the project file. From the Symbols pane, select the price symbol in the symbol library and

click the Plot Symbol button. Alternatively, select a symbol from the Market Symbols table

on the Build Symbols or Evaluation Symbols window and click the Plot Symbol button on

that window. In either case, the Plot Symbol command is also available in the context menu.

To remove a chart from the project file, click the close button on the chart tab.

When a price chart is created, it includes all the data read from the associated price file. It

also includes a volume bar chart directly below the price chart. The chart can be scrolled left

or right by holding down the left mouse button and dragging left or right. Clicking the scroll

bar at the bottom of the chart will move the chart to that position. The bar spacing can be

increased or decreased by moving the mouse scroll wheel. Other formatting options and

features will be added in later versions of Builder.

The context (right-click) menu for charts contains six commands: Show Trades, Show Ideal

Trades, Ideal Trade Settings, Show Orders, Reload, and Select Price File. The Show

Trades command displays the trade entry and exit markers on the price chart provided the

strategy currently selected in the Build Results table contains trades for the same symbol.

The trade entry and exit markers are shown in Fig. 4.1.

Figure 4.1. Trade entry and exit markers on a price chart.

56

The triangular trade markers can by distinguished by both color and shape. There are four

different markers: short entry, short exit, long entry, and long exit. The orientation of the

triangle is meant to signify the trade direction and type of order (entry or exit). Entry markers

are on the left side of the price bar, whereas exit markers are on the right side of the bar. The

long entry and exit markers point upward, whereas the short entry and exit markers point

downward. Long entry markers are green, short entry markers are red, and both exit markers

are black.

If a different strategy is selected in the Build Results tables, the price chart will be updated

automatically to display the trades for the selected strategy, provided the symbols still match.

This makes it easy to review the trade entries and exits for different strategies on the price

chart. If the selected strategy has been applied to multiple symbols, only the trades for the

symbol matching the chart are displayed. Charts for the other symbols can be opened to show

the trades for those symbols.

The Show Ideal Trades command displays the so-called ideal trades on the price chart. Ideal

trades represent hypothetical ideal entry and exit locations for trades and are used in

combination with the Ideal Matches metric. Basically, the Ideal Matches metric represents

the correspondence between the strategy trades and the ideal trades as a percentage, with

100% representing perfect correspondence. Ideal trades and the Ideal Matches metric are

described in detail in the Usage Topics chapter, Ideal Trades.

Ideal trades are shown below in Fig. 4.2. The green horizontal bars with up-turned ends

positioned below price bars represent the entry locations of long ideal trades, and the red bars

with down-turned ends positioned above price bars represent the entry locations of short

ideal trades. The black dotted lines represent the exit locations; long exits are positioned

above the price bars and are drawn with down-turned ends, and short exits are positioned

below the price bars with up-turned ends. Black dotted exit lines drawn without a right-end

mark indicate that the exit bars for the ideal trade continue past the end of the line. As

explained in the Usage Topics chapter, entry and exit locations for ideal trades can last for

several bars, and the exit locations can extend for much longer, as depicted in Fig. 4.2,

provided the minimum profit requirement has been met on at least one bar and the maximum

risk requirement has not been exceeded.

Figure 4.2. Ideal trade markers on a price chart.

57

To change how the ideal trades are defined, select the context menu command Ideal Trade

Settings. This command opens the Metric Options window, as shown below in Fig. 4.3. The

"Market sides" pull-down menu allows you to select whether the ideal trades are for long

trades only, short trades only, or both long and short trades. There are two ways to define the

ideal trades: based on fixed size trade amounts ("Fixed size ideal trades") or based on

multiples of the average true range ("Ideal trades adaptive to ATR"). In either case, the trades

are defined by a minimum profit and a maximum risk or MAE (maximum adverse

excursion). For the fixed size option, enter the dollar (or account currency) amounts for the

profit and risk on a per-share or per-contract basis. For the adaptive (ATR-based) option,

enter the multiples of ATR for the profit and risk and the averaging length for the ATR in

bars (e.g., 14 bars). In this case, the profit and risk values will be calculated as the current

value of ATR multiplied by the respective entered multiple times the point value for the

symbol. When changes to the settings on this window are made, the ideal trades displayed on

the chart, if any, will be updated automatically.

Note: The number of ideal trades in each segment of the price data, along with the ideal trade

settings in effect at the time the population was built, are displayed in the Build Report.

Figure 4.3. Metric Options window for changing the ideal trade settings.

The Show Orders command displays the Trading Orders window, which displays the

trading orders for the currently selected strategy. The Trading Orders window is discussed in

the next section.

The Reload command causes the program to read the file of price data and update the chart

display. Also, if the option to show the strategy trades has been selected, the selected strategy

is re-evaluated and the trade entry and exit markers are updated. If the option to show the

ideal trades has been selected, these are updated as well. This command can be useful when

using Builder as a trading platform. When new price data come in, the reload command can

be used to update the chart along with the orders in the Trading Orders window.

Provided the end date in the Date Range section of the Evaluation Symbols window is set to

the last available date shown in the Market Symbols table, the date range for analysis will be

58

automatically updated to the new last date in the price data file, and the strategy evaluation

will include this new data. If the Trading Orders window is open, the trading orders will be

updated as well. If, for some reason, the last date for analysis is not set to the last available

date, the date controls should be used to set the date to the last available date prior to

selecting the Reload command. Otherwise, the trading orders will not be updated.

The Select Price File command allows you to select a new file of price data for the chart.

This can be useful if the file of price data has been moved or its name has been changed.

Trading Orders
The Trading Orders window displays the trading orders for the currently selected strategy, as

shown in Fig. 4.4.

The trading orders are for the strategy currently selected in the Build Results tables as of the

last date of analysis. This is the last date in the date range selected in the Date Range section

of the Evaluation Symbols window. The strategy is identified by its member number, shown

in the title bar of the window (e.g., #1843 in Fig. 4.4). If the strategy was last evaluated on

multiple symbols, orders for all symbols will be included in the window. For example, in

Fig. 4.4, strategy #1843 has open positions and orders for symbols EMD, TF, and ES.

The Trading Orders window contains two sections: Open Positions and New Orders. Any

open positions are shown in the first section. If there is no open position for a symbol, it will

be shown as "Flat". Open positions are either "Long" or "Short". The "from" price is the

entry price for the position.

Figure 4.4. The Trading Orders window displays the trading orders for the selected trading strategy.

The New Orders section contains any trading orders that should be placed for the next bar.

The orders are shown as either "Exit Order" or "Entry Order". The date and time shown for

all listed positions and orders is the date of the last bar of data analyzed.

The trading orders can be selected and copied using the context (right-click) menu by

clicking "Select All" then "Copy" or using the Ctrl+C command to copy the orders to the

clipboard. After copying, the new orders can be pasted into an email message to your broker.

59

The Trading Orders window can be opened or closed by selecting "Trading Orders" on the

View menu in the ribbon. Alternatively, it can be displayed by right-clicking on a price chart

and selecting "Show Orders". The window can be kept open while working elsewhere in the

program. As explained in Creating and Using Price Charts, above, the trading orders can be

updated when the data in the price file changes by selecting the Reload command of the price

chart context (right-click) menu. The orders will also be updated if the selected strategy is re-

evaluated by selecting Evaluate from the Evaluation menu.

Position Sizing

The trading orders include the position size of open positions and the position size for new

orders. The position size is based on the position sizing settings currently in effect. For open

trades, this will be the same size as shown in the Trade List table for the last trade in the list.

Builder has two options for calculating the equity used for position sizing: accumulating the

equity trade-to-trade during the back-test or using the equity value set on the Evaluation

menu as the "Starting Equity" value; see Position Sizing Settings in the Build Settings

chapter. If the option to accumulate the equity is chosen, the size for the most recent trade

will be based on the accumulated equity over the entire back-test period, which may be a

much higher value than the equity in your trading account. For this reason, to get the correct

position size for your current account equity, select the option "Use entered equity value for

each trade" on the Position Sizing menu and set the Starting Equity value to the current value

of your account equity.

Please Note: Reversal entries don't include the exit order for the open position when listing

the orders under New Orders. A reversal entry, such as found in a stop-and-reverse strategy,

is one in which there is no separate exit, so that the entry reverses the current position. For

example, in a stop-and-reverse strategy, all the entries are reversal entries, and the trades

alternate between long and short positions. You are always in the market in this case. With a

reversal entry, only the entry order for the next trade is shown in New Orders. The exit order

for the current position is not shown. As a result, the entry order will list the position size for

the new entry only. In actuality, to reverse an open position, you would need to place an

order that includes twice as many contracts or shares. For example, if you're long 3 contracts

and the new order is to sell short 3 contracts, you would need to sell short 6 contracts: 3 to

close out the long position and 3 to enter the short trade. In this case, the Trading Orders

window would only show a new order to sell short 3 contracts, and you would need to

recognize that it's a reversal entry and adjust the position size accordingly.

Chapter 5
Build Settings

Before starting the build process, a variety of settings can be made to guide the process and

influence the types of strategies generated during building. Most of these settings and options

are selected on the Build menu of the ribbon, shown previously in Fig. 2.9 in Quick Start

Steps. The remaining settings are made on the Evaluation (Fig. 2.10) and Position Sizing

(Fig. 2.11) menus.

On the Build menu, the settings can be made by starting at the left with the GP Settings

button and working left to right, clicking each button in turn. Most of the buttons have an

associated window that drops down when the button is clicked, such as the GP Settings

window (Fig. 2.5). At the far right is the Market Sides setting, which allows you to restrict

entries to either long-only, short-only, or both long and short trades. The settings and options

for the other buttons of the Build menu and for the Evaluation and Position Sizing menus are

described below.

When all the settings have been made, click the Build button in the Build Strategies panel of

the Build menu to start the build process. The Pause/Resume button can be used to pause the

build process temporarily without cancelling it. Click the button a second time to resume.

The Cancel button will stop the build process and display the results for the last completed

generation.

GP (Genetic Programming) Settings
The options that influence the build process are selected on the GP Settings window, shown

in Fig. 2.5 in Quick Start Steps.

Population Settings

The population size is the number of strategies in the genetic programming population.

Strategies are generated by evolving the population. The larger the population, the longer the

process will take, but the more diversity will be introduced into the solution. More diversity

generally increases the probability of finding a good strategy. With large intraday price files, a

population as small as 100 members may be necessary to achieve reasonable solution times,

depending on the bar size, time span, and computer hardware specifications. Files of daily

data generally allow for population sizes of 1000 or more.

Subpopulations can also be specified. This feature allows the main population to be

subdivided into smaller groups of strategies that are evolved separately. The purpose of

subpopulations is to enforce greater diversity by preventing fitter members from dominating

the population, which can lead to uniformity among strategies after some number of

generations. The number of subpopulations is entered in Subpopulations or by clicking the

up/down arrow buttons.

Entering "1" as the number of subpopulations is the same as not using subpopulations; i.e., the

main population is the only one. If more than one subpopulation is used, the subpopulations

are mixed periodically, as determined by the entry in Mix subpopulations every []

generations. This means that the strategies assigned to the different subpopulations are

randomized after the entered number of generations so that the strategies from different

61

subpopulations can be combined with each other via crossover. To mix or redefine the

subpopulations after each generation, enter "1" here. To not mix them at all, enter the

maximum number of generations used in the build.

The number of strategies saved in the project file is specified using the option After building,

save [] fittest strategies. This is the number of members from the population that are stored.

Builder selects the strategies to store based on fitness. For example, if the population size is

200 and you enter a value of 100 for this setting, the top 100 strategies ranked by fitness will

be stored. You can only store as many members as are in the population. If you enter a

number larger than the population size, the entire population will be stored.

Note: The number of stored strategies doesn't affect the build process, which takes place over

the number of members in the population, regardless of how many strategies you elect to save.

However, once the build process is complete, only the saved strategies are available.

The option to Save generation with the highest average fitness on the test segment is

designed to reduce the risk of over-fitting. When the results on the test segment start to

decline, it can indicate over-fitting, which means the strategies may be starting to fit the

market noise, rather than the tradable features (i.e., signal). By saving the strategy with the

highest fitness on the test segment, this risk may be lessened. When this option is checked, the

stored strategies are from the generation with the highest fitness on the test segment,

regardless of how many generations were completed. Otherwise, the stored strategies are from

the last completed generation or from the initial population if the build was cancelled before

the first generation was completed.

The Reset on Build option determines whether the results from the prior build are used to

initialize the population for the next build. To incorporate the best strategies from the prior

build into the next build, uncheck the Reset on Build box before building. This will cause

Builder to initialize the population with the saved strategies from the prior build. If the

number of saved strategies is at least as large as the population size, this is equivalent to

resuming the build after pausing it.

It’s not necessary to save as many strategies as the population size. If you have a population

size of, say, 500, you might want to save the top 100 strategies. Stopping the build (or waiting

for it to end) and clicking the build button again with the Reset on Build box unchecked will

then initialize the first 100 members of the population with the saved strategies from the prior

build. The other 400 members will be initialized randomly. In this case, the build includes the

best results from the prior build in the new build while still allowing for new members to

influence the results.

If the Reset on Build box is checked, the current population will be discarded, and the

population will be initialized randomly. This is the default setting and is the same as starting a

new build from scratch.

Advanced GP Settings

The crossover percentage (Crossover Pct) is the percentage of members of the population

generated from crossover. Crossover is an operation that takes part of one member and

combines it with part of a different member to create a new member of the population.

Members not generated via crossover are generated via mutation. To introduce more

randomness into the population, try decreasing this percentage, which will increase the

percentage of members generated from mutation.

The mutation percentage (Mutation Pct) is the probability that a given element of the

population member being created by mutation will be modified. This applies primarily to

62

point mutation, which operates on an element-by-element basis. During point mutation, each

element, such as part of an entry rule or part of the exit logic, is randomly modified with a

probability equal to this value. To introduce more randomness into the population, try

increasing this percentage.

The entry and exit rules in Builder are represented by tree structures, as explained in Chapter

1; see Fig. 1.3. The tree depth is the number of levels in the tree. For example, the tree in Fig.

1.3 has a depth of five. The default value of tree depth in Builder is 3. To increase the

potential complexity of the rules, a higher tree depth can be used. Because the tree depth tends

to increase over successive generations as a result of the crossover and mutation operators, the

subtree pruning mutation operator is used to reduce the size of the trees if the tree depth

exceeds this setting. Another way to prevent the entry and exit rules from becoming overly

complex is to include the complexity metric as part of the build metrics; see Appendix:

Performance Metrics for a discussion of the complexity metric.

Setting the tree depth to zero will result in trivial entry conditions that are set to “true”. In this

case, the entry conditions will have no effect on the trading strategy logic. This might be

desirable if you want to generate strategies that have the minimum number of inputs. The

entry logic for strategies of this type will be limited to the entry order logic and, optionally, a

neural network filter. For example, a strategy might be generated with an entry stop order that

contains a stop price calculated from a multiple of the average true range. This would be the

only entry logic for that strategy.

As explained in Chapter 1, the parent members for crossover and mutation are chosen by

randomly selecting members of the population and choosing the member with the highest

fitness score. This is known as tournament selection. The tournament size is the number of

population members randomly selected for the tournament. The default value is 2, which

means that two members of the population are randomly selected, and the one with the highest

fitness score is selected as the parent. A so-called negative tournament is used to select the

member of the population to replace by the newly generated population member. In a negative

tournament, the member of the tournament with the lowest fitness score is replaced. The

tournament size selected here governs both types of tournaments.

Build Failure Rules

If the build process is not going well, the build failure rules can be used to reset it and start

over. There are two optional rules. If selected, the rules are applied once after the specified

generation. For example, you might elect to apply the rules following generation number 10.

If either of the rules applies, the build process will be reset and will start over.

The Fitness Failure Rule calculates the average population fitness on the test segment and

takes a N-period moving average, where N is the specified number of generations. It compares

the moving average for the current generation to the value M generations ago. If the current

value is less than it was M generation ago, the build process is reset. N and M can be any

number of generations less than the maximum specified under Build Termination Options.

The Performance Failure Rule calculates the average value of the specified performance

metric on the test segment over the top N strategies in the population. If the calculated value is

less than (greater than) the specified value, the build process is reset.

Note that both rules are based on the test segment performance. This is because the test

segment is designed to monitor the training segment. For a good quality build, the results on

the test segment should be increasing, just as they normally do on the training segment. These

rules can detect when that is not the case, which may imply that the build process should be

reset.

63

Build Termination Options

The build termination options define the normal conditions under which the build process

should be stopped. There are two ways to stop the build process. First, you can specify both

the Minimum Generations and the Maximum Generations. The build process will run for

at least the minimum number of generations and for no more than the maximum number,

regardless of the other rules.

In general, the number of generations is the number of steps in the evolution of the population

of trading strategies. During one generation, the GP process generates as many new

population members (strategies) as the size of the population. A higher number of generations

generally results in better strategies since it gives the build process more time to evolve the

population.

Hint: To explore the variety of strategy logic that can be generated by Builder, try setting the

maximum number of generations to zero. This will stop the build process after the initial

population is generated. Because the initial population is generated randomly and has not been

modified by crossover and mutation, the resulting strategies will display a wide variety of

trading logic.

The second way to stop the build process is to select one or both of the two optional build

termination rules. Both of these rules are designed to detect when the results are no longer

improving so that further building would be fruitless at best and might result in over-fit

strategies at worst. The first rule stops the build when it detects a decline in the moving

average of the population average fitness on the test segment. Specifically, if the moving

average is less than it was N generations ago, the build process is stopped. The second rule

stops the build when the fitness (i.e., average population fitness) on the test segment falls

below its moving average.

Both the Build Failure Rules and the Build Termination Rules are depicted graphically on the

Build Progress window while the build process is ongoing. Please refer to Build Progress

Window in the chapter Build Results for more information.

Build Metrics
The Build Metrics tab is shown in Fig. 2.6 in Quick Start Steps. This is where you select the

build objectives and conditions that will guide the build process. Strategies are ranked during

the genetic programming process according to the fitness, which is a combination of the

build objectives and conditions selected on this tab. The objectives are metrics that you want

to minimize (e.g., drawdown) or maximize (e.g., net profit). The conditions are expressed as

inequality or equality statements, such as a correlation coefficient greater than or equal to

0.95 or complexity less than or equal to 10. The third list box is for selecting conditions for

filtering the strategies for the Top Strategies results.

The buttons to the right of each list box present the basic options of adding, editing, and

deleting entries from the adjacent list box. These options are also available via a context

(right-click) menu. In addition, cut, copy, and paste command are also available, both via the

small buttons below the Delete button next to each list and as standard control-key

commands (i.e., Ctrl-X for cut, Crtr-C for copy, and Ctrl-V for paste). Entries in the Build

Conditions list can be copied and pasted into the Top Strategies list and vice-versa. To select

multiple list items use the shift-click and Ctrl-click key combinations. Although it does not

affect the fitness calculations, the order of list items can be changed by cutting an item and

pasting it back into a different location in the same list.

64

Figure 5.1. The Add and Edit buttons adjacent to the Build Objectives list open the Build Objective

window for adding a new build objective or editing the current selection.

To add a new objective to the Build Objectives list, click the Add button adjacent to the list.

This will open the window shown above in Fig. 5.1. Select the metric to minimize or

maximize and enter the weight value. The weight values are all relative to one another. To

weight the metrics evenly, a weight value of 1.0 can be entered for each build objective. The

Minimize/Maximize selection will automatically change to the typical choice when the

metric is selected. For example, it will change to "Maximize" if you select Net Profit as the

metric or to "Minimize" if you select Drawdown as the metric. Click OK to add the new

objective or click Cancel to discard it.

To edit a build objective, double-click the metric in the list or click it once and click the Edit

button. This will bring up the same window as shown in Fig. 5.1. Make any desired changes

and click OK to update the objective in the list or Cancel to leave the objective unchanged.

To add a new condition to the Build Conditions list, click the Add button adjacent to the list.

This will open the window shown below in Fig. 5.2. Select the metric for the condition from

the pull-down menu, then select the type of relationship (>=, <=, =, or "between"). Finally,

enter the value or values. For the "Between" condition, the values can be entered in either

order. Click OK to add the new condition to the list or Cancel to discard it. To edit a build

condition, double-click the metric in the list or click it once and click the Edit button. This

will bring up the same window as shown in Fig. 5.2. Make any desired changes and click OK

to update the condition in the list or Cancel to leave the condition unchanged.

Figure 5.2. The Add and Edit buttons adjacent to the Build Conditions list open the Build Condition

window for adding a new build condition or editing the current selection.

The strategy fitness is calculated from a combination of the build objectives and build

conditions. The part of the strategy fitness calculated from the build objectives is a weighted

sum of the metrics shown in the Build Objectives list. The metrics are normalized to the

interval [0, 1] over all members of the population and weighted according to the entered

65

weight values. The resulting values are then scaled so that the maximum value over the

population has the value 1. The scaling is performed relative to the initial population, and the

same scaling factors are used for each generation so that the fitness values can be compared

across generations.

The build conditions are used to penalize the fitness when the conditions are not met. The

size of the penalty is proportional to the extent to which the condition has not been met. For

example, if the condition is that the drawdown should be less than 5000, and the actual

drawdown is 7800, the penalty will be 2800, which is then scaled so that the maximum

penalty value for that condition over the population members has the value 1. If the condition

has been met, the penalty value is zero. Penalty values are subtracted from the fitness. This

means that the maximum penalty value that can be subtracted from the fitness is +1 for each

build condition. Since the maximum value of the contribution to the fitness from the build

objectives is 1.0, the maximum possible value of the fitness is 1.0, which will happen if all of

the build conditions are met for the strategy with the maximum value of the build objectives.

Negative values of fitness imply one or more build conditions have not been met.

Adding build conditions helps the algorithm converge to a solution in which the build

conditions are met. However, it does not guarantee that the build conditions will be met; it's

always possible to specify conditions that exceed the maximum performance potential of the

market. It's usually better to select build conditions that represent realistic performance goals.

If the metric values representing realistic performance goals are not apparent, a few trial runs

can be used to better gauge the potential of the market.

The fitness is calculated over all segments, but only the fitness on the training segment is

used by the genetic programming algorithm to evolve the strategies. The fitness value on the

test segment is used to monitor the build process according to the rules defined on the GP

Settings window.

The values of the metrics used in the build objectives and conditions are the same as the ones

listed in the Build Results table. By monitoring the results in the results table, as well as the

equity curve, you can get a good idea of which objectives or conditions may need to be

added or changed to improve the results. It’s usually best to start with a small number of

objectives and conditions, such as three or four. The default selections are often a good

starting point. After a few generations, you can add or remove items, change the weights, and

so on based on the reported results. An incremental approach usually works better than

selecting objectives and conditions arbitrarily and letting the build process run for an

extended period of time without intervention.

The list labeled Conditions for Selecting Top Strategies contains conditions used to filter

or select members of the population for the Top Strategies results. If all the conditions in the

list are met, the strategy is added to the Top Strategies table. Each member of the population

is checked against this list as each generation is evolved. The conditions are defined the same

as in the Build Conditions table except that you can specify the data segment over which the

condition will be evaluated.

To add a new condition to the Top Strategies conditions list, click the Add button adjacent to

the list. This will open the window shown below in Fig. 5.3. Select the metric for the

condition from the pull-down menu, then select the type of relationship (>=, <=, =, or

"between") and enter the value or values. Finally, select the data segment over which the

condition will be evaluated (training, test, validation, or all segments). Click OK to add the

new condition to the list or Cancel to discard it. To edit a condition, double-click the metric

in the list or click it once and click the Edit button. This will bring up the same window as

66

shown in Fig. 5.3. Make any desired changes and click OK to update the condition in the list

or Cancel to leave the condition unchanged.

Please note: The segment "All segments" is the segment consisting of trades from all

segments combined into one. The metric values on this combined segment are the ones

displayed in the performance report. "All segments" does not mean that the condition will

apply to all segments individually. For example, if a condition for the profit factor is true

over "all segments", it may or may not be true for the training, test, or validation segments

separately. If you want a metric condition to be applied to all segments separately, add the

same condition for each segment.

Figure 5.3. The Add and Edit buttons adjacent to the Top Strategies conditions list open the "Top

Strategies" Condition window for adding a new condition or editing the current selection.

See Appendix: Performance Metrics for a description of each available metric.

Figure 5.4. The Change Performance Metrics window is used to add or remove performance metrics

available on the Metrics tab and shown in Build Results.

67

The list of metrics available for any of the lists on the Metrics tab can be changed by clicking

the "Change List of Metrics" button, which is available on each of the Edit/Add windows

(Figs. 5.1, 5.2, 5.3). This will bring up the Change Performance Metrics window, as shown

in Fig. 5.4.

To add a metric, select it from the list of "Available Metrics" then click the Add button. The

metric will be added to the end of the list by default. If you want to add the new metric to a

specific location in the list of selected metrics, select a metric from the right-hand list before

adding the new metric. When you click the add button, the new metric will be placed above

the metric you selected in the right-hand list. To remove a metric from the list of selected

metrics, select it from the right-hand list, then click the Remove button. To move a metric up

or down in the list of Selected Metrics, use the Move Up/Dn buttons. The

Add/Remove/Move Up/Move Dn buttons can also be accessed by right-clicking. To select

multiple list items use the shift-click and Ctrl-click key combinations or hold down the

mouse button while dragging the cursor over the items you want to select.

Changing the metrics here also changes them in the Build Results table and in the pull-down

menu for the Performance Failure Rule on the GP Settings window.

The Options button in the lower left-hand corner of the Change Performance Metrics

window (Fig. 5.4) opens the Metric Options window, which allows you to select or change

the settings for the Ideal Matches metric. Please refer to the Price Charts chapter, Creating

and Using Price Charts, for more information on changing the settings for the Ideal Matches

metric and to Using Price Charts and the Usage Topics chapter, Ideal Trades, for more

information on ideal trades.

Stress Testing
The options for stress testing and Monte Carlo analysis are available on the Stress

Testing/Monte Carlo Analysis window, which drops down when the Stress Testing button on

the Build menu is clicked, as shown in Fig. 5.5.

This group of options allows you to select the settings for stress testing and Monte Carlo

analysis, which are explained in detail in the chapter Usage Topics. Stress testing involves

making multiple sets of small, random changes to the trading strategy and/or market prices

and evaluating the results using Monte Carlo analysis.

Stress testing can either be applied during the build process or after-the-fact when re-

evaluating a strategy using the Evaluate command. To apply stress testing as part of the build

process, make sure the option "Apply stress tests/Monte Carlo analysis" is selected on the

Evaluation menu and that at least one of the stress testing methods is selected.

The number of Monte Carlo iterations is the number of evaluations made for each Monte

Carlo analysis in addition to the analysis for the original data and settings. Each iteration is a

separate stress test, in which the parameters of the test are randomly chosen according to the

settings under Stress Test Methods. The equity curve corresponding to each stress test will be

displayed in the Equity Curve window; for example, if 10 is entered for the number of Monte

Carlo iterations, 11 equity curves will be shown in the Equity Curve window, one for each

stress test plus the original equity curve. The results of all iterations are reported at the

confidence level entered for Confidence Level. For example, if a value of 95 is entered, the

Monte Carlo results of the stress tests will be reported at a confidence level of 95%.

There are three optional stress testing methods: randomizing prices, randomizing strategy

inputs, and randomizing the starting bar. Check the box next to each method to include it as

68

part of the stress test for each Monte Carlo iteration. At least one box must be checked for a

valid stress test.

Figure 5.5. Stress testing/Monte Carlo analysis options.

To randomize the prices, check the box and enter values for the probability of changing a

price and for the maximum amount by which the price is changed. The probability is applied

to determine whether or not to change each price (open, high, low, close). If a price is

changed, it will be changed by a randomly chosen amount not greater than the maximum

amount entered as a percentage (positive or negative) of the average true range.

To randomize the strategy inputs, check the box and enter values for the probability of

changing the inputs and for the maximum amount by which an input is changed. The

probability is applied to determine whether or not to change each input. If an input is

changed, it will be changed by a randomly chosen amount not greater than the maximum

amount entered as a percentage (positive or negative) of the range for that input. The range

for each input is determined from the ranges set on the Parameter Ranges drop-down window

(Build menu).

To randomize the starting bar, check the box and enter a value for the maximum change in

the starting bar. If the starting bar is changed, it will be changed by a randomly chosen value

not greater than the value entered.

Indicators and Order Types
Indicators are selected on the Indicators drop-down window, shown in Fig. 2.7 in Quick Start

Steps. The available order types are listed on the Order Types drop-down window, as shown

in Fig. 2.8. The tables on these two windows represent the build set, which contains the

indicators and order types that the program draws from during the genetic programming

process. To remove a specific indicator or type of order from the build set, click the

corresponding row in the Consider column of the table. To restore the previous settings,

click the Reset button. To include all items for consideration during the build process, click

the "Consider All" button, which will place an "X" in the Consider column for each item. To

69

remove all items from consideration, click the "Consider None" button. Removing an

indicator or order type from the build set means it won’t be considered by the program when

constructing strategies. Removing too many items may reduce the likelihood of finding

viable strategies. The list of indicators is shown in Table 1 in Entry and Exit Conditions,

Introduction chapter. The indicators themselves are described in the appendix. The different

types of entry and exit orders were discussed in Order Types, Introduction chapter.

The table of order types on the Order Types window includes a column labeled "Include".

Clicking an order type in the Include column ensures that the order type will be included in

each generated strategy. For example, to make sure each strategy includes a protective

(money management) stop, click the Include column entry for one of the Protective Stop

order types.

Note: If an indicator or order type is not available for the chosen trading platform, as

determined from the code type selection on the Evaluation menu, the table entry will be

grayed-out and will not be available for selection.

Strategy Logic Options
Options affecting the types of strategies generated by Builder can be made on the Trading

Logic Options window, which drops down when the Strategy Logic button on the Build

menu is clicked, as shown in Fig. 5.6.

Figure 5.6. Trading Logic Options window on the Build menu.

The Long/Short Symmetry option, if checked, constructs the short-side entry condition by

logically reversing the rule for the long side. This will reduce the system complexity, which

may increase the reliability of the strategy. However, some markets have a clear directional

bias, such as stock indexes, which tend to have an upward bias. In such cases, it may be

better to use different rules for long and short trades.

For intraday strategies, you can specify the maximum number of trade entries per day by

checking the box Limit entries per day to [] and entering the desired maximum number of

daily entries in the box. Limiting the number of entries per day can often improve results for

70

intraday strategies because it reduces the number of different market conditions that must be

accommodated.

Entry times for intraday trades can be restricted to a time range using the Trade entry

option. Enter the starting and ending times using the time selectors. This will restrict entries

to the time range chosen. To force trades to exit by a certain time, enter the desired exit time

in the Exit after option. If an intraday trade is open at that time, it will be closed at market

on the next bar. You can also specify the day of the week on which the exit-after option will

apply using the drop-down menu next to “Apply on”. For example, select "Friday" to exit

after the specified time only on Fridays. To apply the option on every day, select the option

"All Days", which is the default.

Please note: The Exit after option uses the "Exit at Time" order type, as shown on the Order

Types tab. Consequently, selecting this option also selects the "Exit at Time" order type. If

you subsequently de-select this order type on the Order Types tab, you will have to select the

Exit after option again to re-establish it.

The option to Wait for exit before entering new trade is checked by default. This adds an

entry condition that only allows an entry if the current position is flat. If this option is

unchecked, a long entry may reverse a short position and vice-versa. Uncheck this option to

create "stop and reverse" strategies that are always in the market, either long or short.

The option to Apply protective stops on entry bar immediately applies the protective stop

order upon trade entry. This means the protective stop will be applied on the bar of entry,

rather than waiting until the close of the bar like most orders. In TradeStation, selecting this

option applies the protective stop order using the SetStopLoss EasyLanguage command. This

option only applies to existing protective stop orders; it does not add a protective stop if one

does not already exist. Also, because this option must accommodate the SetStopLoss

command in EasyLanguage, it uses the same size stop for both long and short trades.

Indicator nesting can be turned on or off using the option Allow nested indicators where

applicable. If checked, this option allows indicators to take other indicators as input, such as

Momentum(TriAverage(L, N1), N2). The number of levels of nesting is determined by the

tree depth, which is determined for each strategy during the build process. Indicator nesting

is not available for MetaTrader 4 strategies. In this case, the option is ignored.

The intraday bar size can be included as a parameter in the build process by selecting the

option Try different bar sizes for intraday data. Provided the price data for the selected

market support intraday bars, this option will temporarily set the data type to Intraday during

the build process and vary the bar size between the range of values chosen as part of this

option. For example, you might enter a bar size range of 5 to 60 in increments of 5 minutes.

Builder will try different bar sizes ranging from 5-minute bars to 60-minute bars in

increments of 5 minutes (i.e., 5, 10, 15, 20, …, 60). In this case, the selected price file in the

Market Symbols table should contain 5-minute price bars or smaller. For example, 1-minute

bars would also work well in this example, but 3-minute bars would not give accurate results

for some of the bar sizes, such as 10 and 20-minute bars.

Builder will also permit this option if the underlying data are range or tick bars, although the

resulting intraday bars may not be accurate in this case. The most versatile type of price data

to use with this option is 1-minute bars, although larger minute bars are fine, provided the

selected bar size range and increment result in bars that are an even multiple of the bar size in

the price file. To ensure this is the case, the bar size range values and increment entered as

part of this option should be integer multiples of the bar size in the price file. For example, if

71

the price file contains 4-minute bars, the range and size increment should be multiples of 4,

such as 4 to 40 in increments of 4.

When the intraday bar size is part of the build process, the bar size is evolved as part of the

strategy, just like any other strategy feature or parameter. The resulting optimal bar size is

reported in the build report under Strategy Description, Other Strategy Features, as well as in

the Build Results table ("Opt Bar Size"). The reported results will be based on this optimal

bar size. This will be true even if the currently selected bar type in the Market Symbols table

is other than intraday or if the intraday bar size in the Market Symbols table is different than

the optimal value. When selecting "Evaluate" or "Evaluate All" from the Evaluation menu, a

strategy with an optimal bar size will be evaluated at that bar size only if the option "Use

optimal bar size if applicable" is selected on the Evaluation menu. If this option is

unchecked, the strategy will be evaluated using the settings currently in effect in the Market

Symbols table, which may include a different bar type and/or bar size than the optimal one

found during the build process.

Neural Network Settings
A neural network can be included in each strategy by selecting the option Include a neural

network in entry conditions on the Neural Network Settings drop-down window in the

Build menu, as shown in Fig. 5.7. As explained in the section Neural Networks in the

Introduction chapter, a neural network is a nonlinear function of one or more inputs, which

Builder will select and evolve along with the entry and exit conditions if this option is

included. The output of the neural network will supplement the entry conditions. Enter the

settings that help define the neural networks, as shown in Fig. 5.7. Please refer to the

Introduction chapter for more information.

Figure 5.7. Available settings for the optional neural network feature.

Parameter Ranges
The Parameter Ranges drop-down window of the Build menu, shown in Fig. 5.8, allows you

to optionally set the minimum and maximum values for constants used by the program, such

as the sizes of the protective stops, multipliers for the average true range (ATR), and look-

back lengths for indicators and price patterns. For example, if you find that the strategies

generated by the program contain fixed exit stops that are too large, you can reduce the upper

value for the Fixed Stop Size, Exits.

The ranges for fixed size stop and limit orders, both for entry and exit, are given in the

currency in which the account is denominated and are specified per share or contract. For

example, for US dollar-denominated accounts, entering a range of 100 to 1000 for Fixed

72

Stop Size, Exits, would mean that if you had a fixed size exit stop in a strategy, the stop size

would be somewhere in the range from $100 per contract to $1000 per contract. For stock

and forex symbols, the entered values would typically be much smaller in order to be

reasonable on a per-share basis.

Click the Use Defaults button to set the values to a default range calculated by the program

for the currently selected market(s). The default range is calculated automatically based on

multiples of the average true range (ATR). The lower limit is based on a multiple of 0.25 of

the ATR, rounded down to the nearest tick, and the upper limit is based on a multiple of 4.0

of the ATR, rounded down to the nearest tick. If multiple markets have been selected, the

range is based on the current selection, which is the market last clicked on. To see if the

range changes significantly for other markets, click on a different market in the Market

Symbols table and click the Use Defaults button.

Several order types use percentage values. The ranges Percentage Entry Size,

Stops/Limits; Percentage Stop Size, Exits; and Percentage Target Size provide the values

for these order types. The entered values are in percent. For example, if the range for

Percentage Stop Size, Exits is set to 0.5 to 2.0, the size of the protective stop could be

anywhere from 0.5% to 2.0% below the entry price for a long trade.

Figure 5.8. The Parameter Ranges drop-down window of the Build menu.

The range of values for Price Difference Multiple, Entries/Exits is used when constructing

price-based stop and limit orders for both entry and exit orders and for trailing stops with an

ATR floor. This price difference multiple is multiplied by the price difference, including

ATR and true range, before adding it to a reference price to calculate the order price.

73

The parameter range for Lookback, Indicators applies to all indicators requiring a lookback

length with the exception of price patterns; e.g., the averaging length of a moving average.

The lookback length for price patterns is chosen from the range of values given by

Lookback, Price Patterns. This applies to individual prices; i.e., it’s the “N” in O[N], H[N],

L[N], and C[N].

The number of bars for the order types that exit after a fixed number of bars, including

exiting if profitable and exiting at a loss, is selected from the parameter range Exit-After

Number of Bars.

Whether or not an indicator is shifted depends on the Probability of Applying Indicator

Shift. The shift value itself is chosen from the parameter range Indicator Shift. A shifted

indicator returns the value N bars ago, where N is the shift. For example, in EasyLanguage,

XAverage(C, 14)[N] returns the value of the exponential moving average N bars ago. If the

probability is set to 20%, for example, there is a 20% chance that any indicator that can be

shifted will be shifted. Set the probability to 0% to turn indicator shifting off.

The different types of orders and which parameter ranges they use are discussed in Order

Types in the Introduction chapter.

Evaluation Options
The Evaluation menu is shown in Fig. 2.10 in Quick Start Steps in the Getting Started

chapter. This menu contains options that are applied when a strategy is evaluated, which

occurs during strategy building and when the Evaluate or Evaluate All commands are

selected. In this context, "evaluation" means performing a back-test on the selected strategy,

which simulates trading the strategy over the markets selected in the Market Symbols table

on the Build Symbols or Evaluation Symbols window.

Unlike most of the settings on the Build menu, which affect how the strategies are built but

can't change them after they're built, the options on this menu are applied whenever a

strategy is evaluated. As a result, you can change the options on this tab, such as an order fill

rule or the code output option and re-evaluate an existing strategy to see the effect. Re-

evaluating a strategy recalculates the performance results and rewrites the code

without changing the strategy itself.

Evaluate Strategies Panel

This panel of the Evaluation menu contains the Evaluate and Evaluate All buttons. Clicking

the Evaluate button will perform a back-test of the strategy currently selected in the Build

Results table. A message will be displayed in the Messages window when the evaluation is

complete, and the results windows will be updated to display the results. Clicking the

Evaluate All button will evaluate all the strategies in the population. The progress of the

evaluation will be displayed in the Messages window. The process can be cancelled by

clicking the Cancel button.

Simulation Settings Panel

This panel contains settings that affect the back-test results of the evaluation. The Starting

Equity is the value of the account equity at the start of the back-test. Depending on the

option selected on the Position Sizing menu for "Equity Calculation", the simulated account

equity is either accrued during the back-test or set equal to the starting equity for each trade.

In either case, the starting equity affects the calculation of any performance metric that

depends on the account equity.

74

The option Apply stress tests/Monte Carlo analysis optionally evaluates the strategy results

using the stress testing and Monte Carlo options on the Stress Testing window; see the

section Stress Testing and Monte Carlo Analysis under Usage Topics for a more detailed

explanation of the stress testing process. Briefly, stress testing involves evaluating the

strategy multiple times, each time under slightly different conditions; for example, using

randomized prices or randomized input parameter values. When stress testing, the different

evaluations are combined using Monte Carlo analysis, and the results are reported at the

confidence level specified on the Stress Testing window.

The option Use optimal bar size if applicable works in conjunction with the option on the

Strategy Logic window to try different bar sizes for intraday data when building. If that

option is selected, the option here will evaluate the strategy using the optimal intraday bar

size found during the build process. On the other hand, if the option in this section is

unchecked, the strategy will be evaluated using whichever market data settings are currently

in place in the Market Symbols table on the Evaluation Symbols window. This option has no

effect unless the strategy being evaluated has an optimal intraday bar size found from using

the option to try different intraday bar sizes.

The other options in this panel are accessed through the Limit Order Options drop-down

window, shown below in Fig. 5.9.

Figure 5.9. The Limit Order Options drop-down window of the Evaluation menu.

The option Fill limit order when limit price is exceeded only fills limit orders when the

limit price is exceeded. If unchecked, limit orders will be shown as filled when the limit price

is touched. For strategies applied to small bars, such as 1-minute or tick bars, it will usually

be more accurate to assume that a limit order is not filled unless the limit price is exceeded.

In practice, a limit order may not be filled if the limit price is only touched because there

may be insufficient volume to fill all the orders at that price or better. Therefore, it's prudent

to select this option when the volume on a typical price bar is expected to be small.

The option Use Bid/Ask spread to determine fills uses the bid/ask spread to determine fill

prices and whether or not stop and limit orders are filled. The default setting is "off". Since

MetaTrader 4 uses the bid/ask spread in this manner, this option should always be selected

when building and evaluating strategies for MetaTrader 4. Please see Symbol Settings in the

Symbols and Settings chapter for more information on the bid/ask spread.

75

The option Fill limit order no better than limit price prevents a limit order from being

filled at a more favorable price due to a gap opening. For example, if an order to buy on a

limit is in effect and the next bar opens below the limit price, it's possible that you would get

filled at or near the open of the bar, which would be a more favorable fill than the order

price. However, it's also possible that the order would not be filled until the market went

back up to your order price. This option assumes the worst-case scenario of being filled at no

better than the order price. Selecting this option will provide conservative fill estimates for

limit orders.

If the symbol is a futures contract traded through the Chicago Mercantile Exchange (CME),

limit orders may be subject to price banding. The option Place limit order only if order

price is within market's price band means that the limit order will only be accepted by the

exchange if the order price is within the band size of where the market is currently trading.

The price band size is a symbol property; see Symbol Settings in the chapter Symbols and

Settings for more information. Select this option if the selected symbol is subject to price

banding for limit orders and be sure to provide a valid value for the price band size in the

symbol's properties.

Code Type Panel

The code type panel allows you to choose the type of code generated when the strategy is

evaluated. Select TS/MC for TradeStation version 6 and above and for recent versions of

MultiCharts, TS 2000i for TradeStation version 2000i, NT 7 for NinjaScript code for

NinjaTrader 7, NT 8 for NinjaScript code for NinjaTrader 8, MT4 for MQL4 code for

MetaTrader 4, or Ami for AFL code for AmiBroker. The code for all of the saved strategies

listed in the Build Results table is stored in the project file (extension .gpstrat). If you want to

generate code for a different platform, change the selection here, select the desired strategy

from the Build Results table, and select Evaluate from this menu. The code will be re-written

for the new code type as part of the evaluation process.

Note: As shown in Table 1 in the Introduction chapter, not all indicators are available for all

code types. Also, some indicators give different results in each platform. For this reason, the

same results may not be found if the code type is changed and the strategy is re-evaluated.

Also, if an indicator is not available for one platform, converting to a different code type may

result in invalid code. This can also happen due to indicator nesting, which is unavailable in

MetaTrader 4. Invalid code may also result if a strategy with both long and short trades is

converted to AmiBroker code; Builder does not support both long and short trades in the

same strategy for AmiBroker code.

Significance Test Panel

This panel allows you to perform a unique test of statistical significance that's designed to

uncover when a strategy's apparently good performance is, in fact, the result of good luck

rather than effective trading logic. This test should not be confused with the so-called "Trade

Significance" metric that's part of the set of performance metrics calculated by Builder. The

Trade Significance metric (aka "Significance") performs a traditional t test on the average

trade for a strategy. This can provide a measure of strategy quality but cannot assess whether

the results for the strategy are statistically significant because such a test does not take the

data mining process into account.

The significance test in this panel takes the build process into account to construct a

sampling distribution for each strategy in the population. The sampling distribution is based

on the total number of strategies constructed as part of the build process, including any resets

due to the Build Failure Rules. For example, if 10,000 strategies were generated before

arriving at the final population, then each point on the sampling distribution will be produced

76

by generating 10,000 random strategies and taking the best one. This process is repeated M

times, where M is the number of samples.

The randomly generated strategies have no predictive power. However, the best one among a

sample of 10,000 is likely to generate good results simply due to luck. We want to know if

the strategy in the population is significantly better than the best random strategy, so the

sampling distribution is constructed from M strategies, each of which is the best strategy

among all the (e.g., 10,000) randomly generated strategies. Please refer to the article Is That

Back-Test Result Good or Just Lucky? under the Newsletter link at www.Adaptrade.com

for more information.

The Number of Samples entry is the number of samples comprising the sampling

distribution; e.g., M in the example above. The option Run test after each build will cause

this test to be run automatically at the conclusion of each build. If this option is not selected,

you can manually run the test at any time by clicking the button Perform Significance Test.

Builder stores the total number of strategies generated during the build process, which it will

use in constructing the sampling distribution when the test is run at a later time.

The test is applied to each strategy in the population. The strategy's fitness, as evaluated over

all segments combined, is used as the test statistic. The results of the test are displayed in the

Build Results table, listed under "Build Sig", in the right-most column in the table. The result

is listed as the probability value (0 - 1) with a Pass/Fail label in parentheses; for example,

"0.961 (Pass)". A significance level of 0.95 (95%) is the threshold for passing the test. In

other words, a probability value of 0.95 or greater is considered statistically significant.

Please note: The test is very time consuming. Each sample requires a large number of

strategies to be randomly generated, similar to generating a very large initial population. For

example, if there are 10,000 strategies in each sample and 500 samples, a total of 5,000,000

strategies must be generated to construct the sampling distribution. If the test is taking too

long, it can be cancelled by clicking the Cancel button.

Position Sizing Settings
The Position Sizing menu is shown in Fig. 2.11 in Quick Start Steps in the Getting Started

chapter. Position sizing determines how many shares or contracts are traded on each trade.

The position sizing method used when evaluating a strategy is also implemented in the

strategy code generated by Builder, so that when running the code in the trading platform,

the same position sizing should be seen as in Builder.

As with the options on the Evaluation menu, changes to the position sizing can be made after

the strategy is built. To see how different position sizing settings affect the results, change

the position sizing here and select Evaluate from the Evaluation menu. When the strategy is

re-evaluated, the strategy code will be re-written to include the new position sizing settings.

Position Sizing Method Panel

Builder includes six different position sizing methods. Each method has an associated

parameter value, which is entered in the Parameter field.

Fixed size. This method simply uses the value you enter as the number of shares or contracts

for each trade. A fixed size of 1, for example, will trade one contract or share for each trade.

For forex trading, a typical fixed size would be either 10000 or 100000. It's important to set

the upper size limit to a value at least as big as the fixed size entered here.

77

Constant value. With constant value position sizing, each position is sized so that it has a

specified value, such as $1000 per trade. This method can be used when you want to allocate

a specified amount of equity to each trade. The constant value method will determine the

number of shares or contracts corresponding to your specified amount. For example, if you

plan to purchase a stock at a price of $25 and you want to spend $35,000, you would trade

35000/25 or 1400 shares. In this case, the constant value amount is 35000; each trade will be

sized so that the position value is $35,000.

Percent of equity. In this method, the number of shares or contracts is chosen so that the

value of the position is equal to the selected percent of account equity. For example, if the

percent of equity is 40%, the position size will have a value equal to 40% of the account

equity. If the account equity were $30,000, the position would have a value of 0.4 x 30000 or

$12,000. If the share price were $25, the position size would be 12000/25 or 480 shares. In

other words, a position size of 480 shares at $25 per share has a value of $12,000, which is

40% of the equity value of $30,000.

Fixed fractional. In fixed fractional position sizing, the number of shares or contracts is

based on the risk of the trade. For example, you might risk 2% of account equity on each

trade. Fixed fractional position sizing has been written about extensively by Ralph Vince.

See, for example, his book "Portfolio Management Formulas," John Wiley & Sons, New

York, 1990.

The risk of a trade is defined as the dollar amount that the trade would lose per contract or

share if it were a loss. In Builder, the trade risk is taken as the size of the money management

stop applied, if any, to each trade. If the strategy doesn’t use protective (money management)

stops, the trade risk will be taken as the largest historical loss per contract or share. The

largest loss is the largest loss up until the point at which the trade is taken. If subsequent

losses are larger, the trade risk will be larger for subsequent trades.

As an example, consider a stock trading system that uses a 2-point stop. It might enter long at

a price of 48 with a sell stop at 46. The risk per share would be $2. With a fixed fraction of

5% and account equity of $20,000, fixed fractional position sizing would risk 0.05 * 20000

or $1,000 on the next trade. Since the risk per share is $2, this means 1000/2 or 500 shares

would be traded.

Fixed ratio. In fixed ratio position sizing the key parameter is the delta. This is the amount

of profit per share or contract to increase the number of shares or contracts by one. A delta of

$3,000, for example, means that if you're currently trading one contract, you would need to

increase your account equity by $3,000 to start trading two contracts. Once you get to two

contracts, you would need an additional profit of $6,000 to start trading three contracts. At

three contracts, you would need an additional profit of $9,000 to start trading four contracts,

and so on. Fixed ratio position sizing was developed by Ryan Jones in his book "The Trading

Game," John Wiley & Sons, New York, 1999.

Normally, the delta is the amount per share or contract, as in the example above. For some

instruments, such as forex, this would be inconvenient because forex uses a point value of 1

and typically trades in increments of 10,000 or 100,000 shares. To accommodate this, the

delta is specified per multiples of shares when the option to round the share size to the

nearest number of shares (see below) is selected. For example, if the "round to.." option is

selected with an increment of 10,000 shares (i.e., "Round to nearest 10,000 shares"), then the

delta would be specified as the amount per 10,000 shares.

The fixed ratio method will start trading with a position size equal to the minimum number

of shares/contracts specified in the Position Sizing Options panel (see below). For example,

78

if the minimum number of shares for a forex strategy is set to 10,000, this will be the position

size calculated by the fixed ratio method for a profit of zero. As profits are accrued, the

position size will increase, based on the delta, in increments specified by the "round to.."

option.

Fixed amount per share. In this position sizing method, you choose the amount of account

equity required to trade each share or contract. For example, if the dollar amount is $5,000,

you would trade one contract for every $5,000 in the account. If the account equity is

currently $50,000, the position size would be 10 contracts for the next trade.

The account equity value used in the position sizing calculations is determined by the option

selected in the Equity Calculation panel, as explained below. For either option, the starting

equity value, entered on the Evaluation menu, is the value of the simulated trading account at

the start of trading. The default value of starting equity is $100,000.

Note: When building over multiple market together (i.e., a portfolio), the same position

sizing (including parameter values) is used for each market, and the account equity is the

portfolio equity (i.e., the equity used to trade all markets in the portfolio together).

Position Sizing Limits Panel

In the Position Sizing Limits panel, you can enter the minimum and maximum number of

shares or contracts that the strategy will trade by entering values for the Size Limits entries.

The minimum value, which defaults to 1, is applied to all trades. After the position size is

calculated, the position size is increased to the minimum if the position size would otherwise

fall below the minimum. Likewise, the maximum, which defaults to 100, is applied to all

trades. After the position size is calculated, the position size is reduced to the maximum if the

position size would otherwise exceed the maximum.

The option Round to nearest rounds the position size to the nearest number of shares or

contracts. For example, if you enter a value of 100, the number of shares will be rounded to

the nearest 100 shares. The default value is 1. For forex trading, this can be used to trade in

even lot sizes of 10,000 or 100,000 by setting the rounding value to 10,000 or 100,000,

respectively. In this case, the minimum number of shares should be set to the same value and

the maximum value to some multiple of the minimum.

Evolve Position Sizing Panel

You can optionally choose to have Builder evolve the position sizing as part of the build

process. There are three options. The first option, Don't evolve; use selected settings, uses

the settings you specify for each strategy. If you select Evolve parameter only, the program

will evolve only the parameter value (e.g., the fixed fraction) while using the selected

position sizing method. If you select Evolve method and parameter, then Builder will

evolve both the position sizing method (i.e., one of the six available methods) along with the

associated parameter value.

Equity Calculation Panel

There are two options for instructing Builder how to calculate the account equity value used

for position sizing and back-testing in general. If the option "Accumulate equity trade to

trade" is selected, the program will track the account equity during the back-test from trade

to trade, starting with the first date in the trading period, where the account equity is equal to

the starting equity value, and accumulate the profits and losses up through the last date in the

date range. As the equity changes, the position size will generally change as well. In all

position sizing methods except for fixed size and constant value, the position size increases

as the account equity rises and decreases when the account equity drops. For a portfolio of

79

markets, the account equity for this option is the accumulated equity from the trade profits

and losses from all markets in the portfolio.

If the option "Use entered equity value for each trade" is selected, the account equity for

every trade is simply the starting account value entered on the Evaluation menu. In this case,

the profits and losses are not accumulated from trade to trade. This option is useful when you

want to see what the position size would be for a specific value of account equity, such as

when using Builder as a trading platform. In this case, you can enter the current value of your

account equity as the starting equity value and re-evaluate the strategy. The corresponding

position size will be displayed in the Trading Orders window for the next (upcoming) trade if

there is one. Likewise, if you're trading a Builder-generated strategy in your trading platform,

you would most likely want to select this option because it will enable you to enter the

current value of your account equity as a strategy input. The strategy would then generate the

correct position size for the entered account value.

Reset Panel

To return to the position sizing that was selected or evolved with the strategy when it was

built, click the Reset to Build Settings button then select Evaluate from the Evaluation menu

to rewrite the code and re-calculate the results.

Chapter 6
Build Results

The results generated from running Builder include the strategy code for each of the saved

strategies along with the performance results for each one. The docking windows (panes)

described below display the different types of program output. The Getting Started chapter

discussed working with windows and panes in Builder.

Build Progress Window
The two plots of the Build Progress window, shown in Fig. 6.1, display the progress of the

build process at each generation. The Build Failure Tracking plot depicts the results of the

Build Failure Rules defined on the GP Settings window (Build menu). The curve labeled

"Ave Fit" is the average fitness of the population members on the test segment at each

generation. The "Fit MA" curve is the moving average of the Ave Fit curve, where the look-

back length is defined on GP Settings. The "Metric" curve shows how the average of the

selected metric over the top N strategies on the test segment changes from generation to

generation during the build process. Generally speaking, all three curves should be sloping

upward to the right as the build progresses, as shown in Fig. 6.1, indicating improving

performance on the test segment. The Build Failure Rules on GP Settings allow you to reset

the build if this is not the case.

Figure 6.1. The Build Progress window displays and updates the Build Failure Tracking and Build

Termination Tracking plots while strategies are being built.

The Build Termination Tracking plot depicts the build termination rules of the GP Settings

window. The curve labeled "Train Fit" shows how the average population fitness on the

training segment progresses from generation to generation. The "Test Fit" curve shows the

same results for the test segment. "Fit MA" is the moving average of the test fitness curve, as

defined on GP Settings.

81

For a good quality build, the fitness on both the training and test segments should be

increasing at each generation, as shown in the figure. When the fitness starts to drop on the

training segment, no further improvement should be expected in the strategies. More

importantly, if the fitness on the test segment starts to level off or decline while the fitness on

the training segment is still increasing, this can suggest that the strategies are being over-fit.

In this case, the build process should be terminated, which is the purpose of the build

termination rules on GP Settings.

Messages Window
The Messages window displays messages generated by the program while performing build

and evaluate operations, reading price files, and so on. For example, when building

strategies, a message is displayed in this window several times per second indicating which

member of the population has been recently initialized or created. This window will also

display an error message if the price file cannot be found. Other error messages are described

below.

Error messages can either mean the build process was not successful or there was a

recoverable error during an otherwise successful build. If the error was not recoverable, the

build process will terminate and a message will be displayed stating "Build process failed."

Otherwise, the messages should be considered informational only.

Memory Allocation Errors. The following message will be displayed in the Messages

window if the program runs out of memory:

 Insufficient memory. Try reducing population size, tree depth, or price

file size.

This error occurs when the program’s memory requirements exceed the computer’s available

memory. When this happens, the program is designed to detect the lack of available memory

and stop processing before a program crash occurs. When this happens, it can be resolved by

reducing either the population size or the size (length) of the file of price data. If the tree

depth has been increased beyond the default value, lowering it may also help.

Time-Out Errors. The following message will be displayed in the Messages window if it

takes too long to evaluate a strategy:

 Strategy evaluation took too long (timed out), possibly from too many

trades, Monte Carlo samples, or bars.

This means it took longer than the so-called time-out interval to evaluate one of the strategies

being built or created during the significance test. The time-out interval is set under

Program Options (View menu) and defaults to 20 seconds. If it takes longer than this to

evaluate a strategy, there may be a problem with the strategy or another issue that is causing

the long evaluation time. Common reasons include too many trades (e.g., 20,000 or more), a

large number of bars (e.g., half a million or more), and/or the use of stress testing.

If the problem is too many trades, a simple solution is to select the option to limit the number

of entries per day. Reducing the number of bars of data and/or turning stress testing off may

resolve the problem. If this error is encountered during population initialization, the program

will try to build another strategy to resolve the problem. If the problem continues beyond the

maximum number of retry attempts specified on Program Options, the build process will be

stopped. Also see Build Time in the Usage Topics chapter for more information.

82

Strategy Generation Errors. The following message will be displayed in the Messages

window if there is a problem evaluating a generated strategy:

 Strategy generation failed for population member xxx. Creating new

strategy...

where xxx is the population member number. This will often be preceded or followed by the

following message:

 Indicator function failed to evaluate Properly.

This message most often appears if the TRIX indicator function was evaluated with a non-

positive argument, which is not allowed. A non-positive argument to TRIX can occur if the

argument is calculated from some other indicator or combination of indicators. When this

happens, the program will discard the strategy and generate a new one, as indicated by the

error message. These errors are almost always recoverable. Only if the program is unable to

generate a valid replacement strategy after the maximum number of retry attempts will the

build process terminate.

Build Results Tables
The Build Results tables display summary results for the saved population members. There

are separate tabs for the main population ("Build Results") and the top strategies population

("Top Results"). A pull-down menu at the top left allows you to select the results for each

segment separately or the results for all segments combined. The labels in the pull-down

menu are either "training", "test", "validation", and "combined" if the results are over the

same data used in the build or "OOS Pre", "In-Sample", "OOS Post", and "combined" if the

results are over a different date range or over a different symbol than used in the build. OOS

Pre corresponds to the portion of the selected date range, if any, that precedes the date range

used in building (training, test, and validation). In-Sample corresponds to the date range used

in building, and OOS Post corresponds to any data following the date range used in building.

The performance metrics displayed in the table are chosen as discussed in the previous

chapter. Click on a row in the results table to display the results for the corresponding

strategy in the Performance Report, Build Report, Equity Curve, Trade List, and Strategy

Code windows. Builder saves and displays the number of strategies you specify on the GP

Settings window up to the population size.

Note that if one segment ends with an open trade that exits in the next segment, then the

trade will be included in the metrics for the next segment.

While the build process is ongoing, the program updates the results in the tables after each

completed generation. If the build is cancelled before the first generation is completed, the

initial population will be displayed. The strategies are listed in order of decreasing fitness on

the training segment by default. The table results can be sorted by any column by clicking on

the column heading. For example, to sort the results by net profit, click on the Net Profit

column label. The results in related tables are sorted the same way. For example, if you sort

the training results by drawdown, the test results will appear in the same order.

The Top Results table lists performance results for strategies that meet the filtering criteria

specified on the Build Metrics window in the list "Conditions for Selecting Top Strategies".

The population of top strategies is updated after each generation is completed for every build

within the project file. Top Strategies may come from different builds if multiple builds have

83

been run. Top Strategies are saved in the project file, along with the saved members of the

main population.

To remove a strategy from the table of Top Results, click on the entry then right-click and

select Delete Selected Strategy. The table can be cleared by right-clicking and selecting

Delete All Strategies. Neither delete operation will affect the Build Results table for the

main population. A strategy can be copied from the Build Results table to the Top Results

table by selecting the strategy in the Build Results table then right-clicking and selecting

Copy Selection to Top Strategies. This can be used to save an interesting strategy that

wasn't picked up by the filtering rules before re-building the population.

The entries in the Top Results table are listed in the order in which they were added to the

table. Since strategies can come from different builds, two different strategies may have the

same Member number. To see how different strategies in the table compare to one another,

click any strategy in the table then select Evaluate All from the Evaluation menu. This will

re-evaluate each of the strategies in the Top Results table and re-compute their fitness values.

You can then sort by fitness by clicking on the Fitness column heading.

The Build Results tables can be copied to a spreadsheet by right-clicking on the table and

selecting Copy. Open a blank spreadsheet page and select Paste to insert the table results into

the spreadsheet. There is also a right-click menu option to Change Metrics, which opens the

Change Performance Metrics window, discussed in the previous chapter under Build

Metrics.

If stress testing has been applied, the results shown in Build Results will be the Monte Carlo

results at the confidence level specified on the Stress Testing window. Note: Monte Carlo

results of stress testing are calculated metric-by-metric at the specified confidence level and

therefore are not directly related to one another. For example, the Monte Carlo net profit is

not necessarily the sum of the long Monte Carlo net profit and short Monte Carlo net profit

because the long and short net profit are each calculated at 95% confidence. This applies to

all metrics.

Performance Report Window
The Performance Report window displays a detailed performance report for the strategy

selected in Build Results. The performance report can be copied to the clipboard, printed, or

saved to a file in several different formats by right-clicking and selecting from the popup

(context) menu (Copy, Save to File, Print, Help).

An example of part of the performance report is shown in Fig. 6.2. The performance report

includes results for all trades together, long trades only, and short trades only. The results are

over all data used in the build: training, test, and validation combined. The metrics displayed

in the report are described in Appendix: Performance Metrics.

The market or markets used in evaluating the strategy are shown at the top of the report

under Markets. If more than one market was selected in the Market Symbols table, the results

will represent the performance of the selected strategy over the combination of markets (i.e.,

portfolio). To see the results for a different market or markets, change the selections in the

Market Symbols table, then select Evaluate from the Evaluation menu. The strategy will be

evaluated over all markets that have been selected in the Include column of the Market

Symbols table.

84

Figure 6.2. Performance report for selected strategy (population member 105).

If stress testing has been applied, the reported results will be the Monte Carlo results at the

confidence level entered on the Stress Testing window, and the report will indicate "Monte

Carlo: Stress Test Results at x% Confidence", where x is the selected confidence level.

Note: Monte Carlo results of stress testing are calculated metric-by-metric at the specified

confidence level and therefore are not directly related to one another. For example, the

Monte Carlo net profit is not necessarily the sum of the long Monte Carlo net profit and

short Monte Carlo net profit because the long and short net profit are each calculated at

95% confidence. This applies to all metrics.

Build Report Window
The Build Report window summarizes the results of the build process for the strategy

selected in the Build Results table. The build report can be copied to the clipboard, printed,

or saved to a file in several different formats by right-clicking and selecting from the popup

(context) menu (Copy, Save to File, Print, Help).

An example of part of the build report is shown in Fig. 6.3. The build report consists of three

sections: Build Summary, Strategy Description, and Build Settings. The Build Summary

includes items such as the build date, time required to build the population, number of

generations, etc. The Strategy Description lists all elements of the strategy, including

indicators, order types, and other strategy features. The Build Settings section records all the

85

settings made by the user that were in place when the build commenced; i.e., all settings that

affected the build process.

Figure 6.3. Build report for selected strategy (population member 105).

Strategy Code Window
The code for the selected strategy is displayed in the Strategy Code pane. To view the code

for a different strategy of the population, select the strategy in the Build Results table. The

code in the Strategy Code window can be copied to the clipboard by right-clicking and

selecting Copy Strategy or by selecting Strategy Code from the Clipboard menu. To copy

only part of the strategy code, click and drag the mouse over the part you want to copy, then

right-click and select Copy to copy the selected text to the clipboard. MetaTrader 4 code can

be saved directly to a .mq4 file by right-clicking in the code window and selecting "Save

MT4 Strategy to File".

Similarly, select "Save NinjaScript Strategy to File" to save the strategy code for NinjaTrader

7/8 directly to a file in the required folder for NinjaTrader 7 or NinjaTrader 8. Once selected,

the folder location for NinjaTrader strategies is stored in the registry, so it only needs to be

selected once. Builder initially defaults to the folders Documents\NinjaTrader

7\bin\Custom\Strategy\ and Documents\NinjaTrader 8\bin\Custom\Strategies\, which are the

customary locations for NinjaTrader 7 and NinjaTrader 8, respectively. Builder creates a

default strategy name for each NinjaTrader strategy of the form

projectname_member#_#inputs_maxbarsback. For example, for a project with the file name

86

"MyProject.gpstrat", a typical strategy name might be MyProject_3_7_72, which indicates

the strategy is from population member 3 with 7 inputs and a MaxBarsBack requirement of

72. When saving the file, a new name can be entered, which will become the name for both

the file and the strategy.

Note: The options to save the strategy code directly to a file for either MetaTrader 4 or

NinjaTrader are only available if the code is the respective format. Otherwise, the option is

grayed out.

The strategy code cannot be edited directly in Builder. To edit the code, copy the code to

your trading platform (e.g., TradeStation or MultiCharts), and use the editor in the trading

platform.

Unless saving the strategy code directly to a file, to transfer the code to your trading

platform, copy the code from the Builder code window and paste it into the strategy editor of

the trading platform. In TradeStation or MultiCharts, open a new strategy window in the

EasyLanguage editor, choose a name, then paste the code into the empty strategy window.

Finally, compile the EasyLanguage code by pressing F3. In MetaTrader 4, open a new

window in the MetaEditor, paste in the code from Builder, and click the compile button. In

AmiBroker, in the Charts pane, right-click on the Systems folder and select "New" and then

"Formula". Enter a name then right-click on the name and select "Edit". Select "Paste" from

the Edit menu to paste the code into the edit window, then click the save icon and, finally,

click the AFL icon to verify the code.

If you're pasting the strategy code over the code for an existing strategy, it will be necessary

to reset the input values before running the back-test. In MetaTrader 4, this can be done by

clicking the Expert properties button on the Tester window and clicking the Reset button on

the Inputs tab. In TradeStation, delete the strategy from the chart and re-insert it to reset the

input values. In AmiBroker, click the Parameters icon on the Analysis window and click

"Reset all".

To test the strategy in TradeStation/MultiCharts, insert it into the corresponding chart, such

as the chart used to generate the price data file for analysis, and set the ”Maximum number of

bars study will reference” (in TradeStation, Format Strategies, Properties for All; in

MultiCharts, Format Signal, Properties) to the MaxBarsBack value listed in the results table.

To test the strategy in NinjaTrader 7, first open the strategy in the NinjaTrader editor by

selecting Edit NinjaScript from the Tools menu, and click the Compile button. The strategy

should then be ready to back-test via the Strategy Analyzer window. Select the strategy on

the Backtest tab of the Strategy Analyzer window and click the button "Run Backtest".

In NinjaTrader 8, provided the strategy has already been saved to the NinjTrader 8 Strategies

folder, the strategy should already be compiled. Open a Strategy Analyzer window and select

the strategy from the Settings window. Verify the settings and click the Run button.

To test the strategy in MetaTrader 4, select the strategy (Expert Advisor) on the Tester

window (Settings tab), and select the symbol and date range. For best results in MetaTrader,

select "Every tick" as the Model, then click the Start button to run the back-test.

To test the strategy in AmiBroker, right-click on the strategy in the Systems folder of the

Charts pane and select "Analysis". On the Analysis window, reset the parameter values by

clicking on the Parameters icon, and check the settings by clicking on the Settings icon.

Finally, click the Backtest icon to run the test.

87

Equity Curve Window
The equity curve for the strategy selected in the Build Results table is displayed in the Equity

Curve pane. To view the equity curve for a different strategy of the population, select the

strategy in the Build Results table. The equity curve is based on the most recent evaluation. If

you want to see the curve for a different range of dates, change the date range on the

Evaluation Symbols window, then select Evaluate from the Evaluation menu to re-evaluate

the strategy. Similarly, the selected strategy can be evaluated over a different market or

markets by selecting the market(s) in the Market Symbols table and re-evaluating the

strategy.

Vertical lines are drawn on the chart to divide the different segments. If the equity curve is

plotting the build results, the label "Training | Test | Validation" is shown in the lower left-

hand corner. In this case, the line between the training and test segments is gray, and the line

between the test and validation segments is drawn in green if the validation results are

profitable or red if they’re not.

If you change the date range on the Evaluation Symbols window after building and re-

evaluate the strategy, Builder will display the label "OOS Pre | In-Sample | OOS Post". OOS

Pre corresponds to the portion of the selected date range, if any, that precedes the date range

used in building (training, test, and validation). In-Sample corresponds to the date range used

in building, and OOS Post corresponds to any data following the date range used in building.

The OOS Pre and OOS Post segments of the curve use the same green/red color coding as

validation data, and the In-Sample segment is colored blue.

The equity curve pane can display either the closed-trade equity curve or the detailed equity

curve.

Closed-Trade Equity Curve

The closed-trade equity curve displays the equity at the close of each trade versus trade

number. It does not include contributions from any external equity curve symbols that are

part of the evaluation and does not display equity values between trade entries and exits.

When multiple primary markets are selected in the Market Symbols table, a separate curve is

plotted for each individual market, based on trades from that market. In addition, a portfolio

equity curve (i.e., the composite equity curve for all primary price symbols) is plotted with a

slightly thicker line, using the same coloring scheme discussed above. A color-coded key

consisting of the symbol names for all primary price symbols is drawn in the lower right part

of the plot to help identify which curve corresponds to which market.

When stress testing is applied, a separate equity curve is shown for each stress test, and each

curve is drawn in a different color. The equity curve for the original data is plotted with a

slightly thicker line. When stress testing is applied to a portfolio, each equity curve line

represents the portfolio equity curve for one stress test.

Detailed Equity Curve

The detailed equity curve consists of the bar-by-bar equity values plotted by date; each point

on the curve represents the equity value at the close of a bar. This display includes any

external equity curves that are part of the evaluation. Regardless of the other settings and

options in effect, only one curve is plotted for the detailed equity curve. The plotted curve

represents the composite of all symbols, including equity curve symbols, that are included in

the evaluation. If stress testing is applied, the curve corresponds to the original (unmodified)

values.

88

The project file does not store the detailed equity curve values for a strategy unless the

detailed equity curve is displayed for that strategy when the project file is saved. Otherwise,

if the detailed equity curve option is selected, the strategy will be re-evaluated in order to

generate the bar-by-bar equity values before the curve is displayed.

When one or more equity curve symbols are included in the build, the detailed equity curve

will be displayed by default. Otherwise, the equity curve pane will default to the type of

equity curve -- either closed-trade or detailed -- that was displayed for the selected strategy

prior to building.

To switch the display from the closed-trade to the detailed equity curve or vice-versa, right-

click on the plot area and select Plot Detailed Equity Curve from the popup (context) menu.

This will toggle the display from one plot type to the other.

The equity curve can be copied to the clipboard by right-clicking and selecting Copy Equity

Curve or by selecting Equity Curve from the Clipboard menu.

Trade List Table
The Trade List table displays the trade-by-trade results for the selected strategy. To view the

trade list for a different strategy of the population, select the strategy in the Build Results

table. The trade list table includes the following fields: symbol, entry date, signal price, entry

price, entry signal name, exit date, signal price, exit price, exit signal name, stop price,

direction, quantity, profit/loss, costs, net profit/loss, risk and equity.

Entries and exits have both a signal price and the price at which the simulated trade was

filled (i.e., Entry Price and Exit Price). The signal price is the price calculated by the strategy

and will often be different than the fill price because of where the next bar opened. For

entries using stop or limit orders, the signal prices are given by the code variables EntPrL

and EntPrS for long and short trades, respectively. For entries at market, the signal price will

be the close of the bar on which the order was generated. For exits, the signal price may be a

stop price (code variables LStop, SStop), target price (code variables TargPrL, TargPrS), or

market price. For exits at market, the signal price will be the close of the bar on which the

order was generated. The entry and exit signal names are as shown below in the table.

Order Type Signal Name in Trade List Table

Enter at Market Market

Enter on Stop ($) Fixed Stop

Enter on Stop (%) Percent Stop

Enter on Stop (Price) Price Stop

Enter at Limit ($) Fixed Limit

Enter at Limit (%) Percent Limit

Enter at Limit (Price) Price Limit

Exit at Target ($) Fixed Target

Exit at Target (%) Percent Target

Exit at Target (Price) Price Target

Trailing Stop ($ Floor) Trail $

Trailing Stop (ATR Floor) Trail ATR

Protective Stop ($) Fixed Stop

Protective Stop (%) Percent Stop

Protective Stop (Price) Price Stop

Exit After N Bars N Bars

Exit After N Bars Profit Bars Profit

Exit After N Bars Loss Bars Loss

89

Exit After Time Time

Exit at Market Market

Exit End-of-Day End-of-Day

Exit End-of-Week End-of-Week

The stop price field will read “NA” if there was no money management (protective) stop for

that trade. The direction field is either “Short” or “Long”. Quantity is the number of shares or

contracts that were traded. The profit/loss field is the closed trade profit or loss before costs,

which are the total costs for the position. The net profit/loss is the profit/loss amount after

costs. The risk is the potential loss per share or contract based on the protective stop, if any,

and includes costs. The equity field displays the cumulative closed trade equity, as shown in

the closed-trade equity curve plot. Note that a trade that enters during one segment but exits

in the next segment will be listed in the next section of the list. For any trade that did not exit

before the end of the trading period, the word "open" will be displayed in the Exit Price

column. Open trades are not included in the calculations shown in the Performance Report,

except where noted.

Training results in the trade list table are displayed with profitable trades written in green text

and unprofitable trades in red text against a background color that depends on the chosen

theme. The test trades are displayed with a white text color and the background color set to

green or red for profitable or unprofitable trades, respectively. The validation trades are

written using the same background coloring as for the test trades but with black text.

The trade list table can be copied to a spreadsheet by right-clicking on the table and selecting

Copy or by selecting Trade List from the Clipboard menu. Open a blank spreadsheet page

and select Paste to insert the table results into the spreadsheet. To save the table contents to a

comma-delimited text file (.csv file), right-click and select Save to file. This file is formatted

so that it can be read by Market System Analyzer (MSA) position sizing software as a

trades file. In MSA, select the WriteTrades format when selecting the file under Data Source

or when importing the file.

To save the trades directly to a MSA (extension .msa) file, right-click and select Save to

MSA file. The program will prompt you to enter a name for the MSA file as well as a name

for the text file to which the trades will be saved. The resulting .msa file can be opened

directly by MSA version 3.3 or higher and will include all current Builder settings that are

applicable to MSA. If more than one market was used in the build process, the point value

and trading costs stored in the MSA file will be the ones for the currently selected market.

Chapter 7
Usage Topics

The basic steps to using Adaptrade Builder were outlined in the Quick Start Steps section in

Chapter 2 (Getting Started). This chapter delves into various topics related to using Builder,

including an explanation of stress testing and Monte Carlo analysis, a discussion of out-of-

sample performance, factors that affect the build time and how to reduce it, considerations

for after you’ve built a strategy, common questions, and various tips and hints for strategy

building.

Stress Testing and Monte Carlo Analysis
Testing a trading strategy for robustness is often referred to as sensitivity analysis or stress

testing. The basic idea is to see what happens when small changes are made to the strategy

inputs, price data, or other elements of the strategy or the trading environment. A robust

strategy exhibits a proportional and relatively muted reaction to such changes, whereas a

strategy that is not robust will react disproportionally and sometimes fail outright when small

changes are made to its inputs or environment.

Why is This Important?

Strategy robustness is important because the markets never stay the same. Consider the

strategy inputs, for example. Inputs such as the look-back length for a moving average might

be optimal over the back-test period, but going forward, different values might be optimal.

How will the strategy perform when the inputs are no longer optimal? One way to answer

that is to see how the results change when the input values are changed.

Robustness is related to strategy over-fitting. The strategy should not have been fit so tightly

to the market during the development process that it can't withstand any changes to the

market. Generally speaking, to test for over-fitting, the market can be changed, the strategy

can be changed, or both can be changed. A strategy that does not stand up well to relatively

small changes is not robust and is likely to be over-fit. Such a strategy should not be

expected to do well in the future.

Types of Stress Testing

There are many different ways that a strategy can be stress tested. Changes can be made to

the strategy itself or to the price data on which it's back-tested. The trading costs, such as the

amount of slippage, can be changed or the position sizing can be changed. In principle,

anything that affects the strategy back-testing results can be varied. In Builder, the following

three types of stress testing are available (see Stress Testing the Build Settings chapter):

1. Changing the strategy inputs.

2. Changing individual prices.

3. Changing the starting bar.

The rationale for changing the strategy inputs was discussed above. Two settings are

available to randomly change the input values. One is the probability of changing an input.

For example, if the probability is 10%, that means there's a 10% chance that an input will be

changed. The second setting is the maximum percentage change that will be applied to an

91

input that is being changed. The actual amount of the change is randomly chosen between -

Max and +Max, where Max is the maximum percentage change and might be on the order of

5% or 10%. This percentage is applied to the range of values for each input. For example, if

the look-back length for an indicator is selected from the range of values from 1 to 101, then

the range would be 100. If the Max value is 10, the randomly chosen change percentage

might be, say, -3%, which means a value of -3 (i.e., -3% of 100) would then be added to the

original input value to obtain the changed input value.

One way that a strategy can be over-fit, and therefore not robust, is if it's fit too closely to

specific prices in the back-test. For example, if the strategy enters long on a stop and several

large, profitable trades enter at the high price of the day, that should raise a red flag. What

would the results look like if the high had been one tick lower on those days? If such a small

change would ruin the results, the strategy is clearly not robust. A stress-testing technique to

detect that kind of over-fitting is to make random changes to individual prices and evaluate

the results.

Two settings are available to randomly change the price data. One is the probability of

changing a price. For example, if the probability is 50%, that means there's a 50% chance

that a price -- open, high, low, close of each bar -- will be changed. The second setting is the

maximum percentage change that will be applied to a price that is being changed. As with

the input values, the actual amount of the change is randomly chosen between -Max and

+Max, where Max is the maximum percentage price change. The value of Max is taken as a

percentage of the average true range over the past 100 bars. For example, if the average true

range is 10 points and the maximum percentage change is 20%, then the change amount is a

randomly chosen number between -2 and +2 points. Let's say the actual number is -1.25

points, and the closing price is 1250.50. The modified close would then be 1249.25. Finally,

it's possible that changing a price will invalidate the normal price ordering, such as reducing

the open so that it's below the low. To prevent that, the prices will be adjusted if necessary

after making the change to keep the open and close within the high/low range.

The last available stress testing method involves changing the starting bar. It's probably

obvious that a good strategy should not fall apart when you start the back-test on a different

bar. It might be less obvious how this can happen. Consider a hypothetical strategy that

enters long on a moving average crossover. It then holds the trade exactly five bars before

exiting at market. Putting aside the suitability of the logic, imagine what the trade history

might look like on a price chart. If the moving average entry condition uses a short-term

average crossing above a long-term average, it's entirely possible that in a sustained up-trend,

the entry condition could be true for a long period of time; i.e., the short-term average might

be higher than the long-term average for many bars in a row.

If the back-test were started during that period, the first trade would enter on the next bar

after the starting bar, and each trade would last five bars, followed immediately by the next

entry, and so on. Now consider what would happen if the starting bar were changed. If the

starting bar were one bar later, for example, the whole series of trades would be shifted one

bar to the right. It's entirely possible that some of those series of five-bar trades would be

much more profitable than others, depending on how the trades aligned with any underlying

five-bar trend cycle that existed. So, depending on the starting bar, the strategy might be

highly profitable or unprofitable because of where the trades started and ended. It might not

be obvious during development that the strategy logic had this type of dependency on the

starting bar, particularly for more complex types of logic.

To test for the effect of the starting bar, the bar on which the strategy back-test is started can

be varied by a random number chosen between 1 and N. For example, if N is chosen to be

92

300, the starting bar will be varied by adding a randomly chosen number between 1 and 300

to the original starting bar number.

Monte Carlo Analysis

Varying the inputs, prices, and/or the starting bar by a random amount only provides one

alternative to compare against the original results. To get a more complete picture of how

robust a strategy is, the process can be repeated many times to create a distribution of results.

Generally speaking, varying the input variables randomly over a large number of samples in

order to generate a statistical distribution of results for the function that depends on those

inputs is called Monte Carlo analysis.

In this case, the function is the trading strategy and the function inputs are the strategy inputs,

market prices, and/or the starting bar. By repeating the stress test many times, multiple sets

of trading results are generated. A typical equity curve plot resulting from this process is

shown below in which each line in the plot represents the equity curve from one sample of

the stress test. The thicker green line in the figure represents the equity curve corresponding

to the original results.

Figure 7.1. Stress test results based on Monte Carlo analysis.

In a different example, suppose that the number of Monte Carlo samples or iterations was set

to 20, resulting in a total of 20 sets of results. A typical set of net profit results corresponding

to each equity curve might be the following:

147855.00

133286.00

87771.00

92707.00

132149.00

93

88384.00

126019.00

96581.00

105466.00

102946.00

86753.00

96127.00

116611.00

68459.00

109427.00

96242.00

111020.00

50201.00

130076.00

104181.00

The highest value is $147,855 while the lowest value is $50,201. The Monte Carlo analysis

can be used to estimate the likely net profit with a specified degree of confidence given the

variety of results. A confidence level of 95% is typical, which means there would be a 5%

chance of the net profit being lower than the estimated value. To obtain the value of net

profit at 95% confidence, the list above is sorted from highest to lowest, and the value 95%

of the way down the list is selected. Since there are 20 items in the list, the 19th item in the

sorted list is selected, which would be a net profit of $68,459; i.e., the second lowest value in

the list.

This result can be interpreted as follows: if the randomization of the price data is

representative of the kind of random differences expected in the market, then 95% of the

time, the net profit can be expected to be at least $68,459.

Builder applies the same approach to all performance metrics tracked by the program. If the

metric is one where a lower value is better, such as maximum drawdown, the value is

selected 95% of the way up the list.

In summary, stress tests measure how robust a trading strategy is, which is an indication of

whether or not the strategy is over-fit. The stress test results are analyzed using Monte Carlo

analysis, which makes it possible to quantify the results and provides an estimate of

performance that is generally more conservative (i.e., less favorable) than the back-test

results based on the original data.

It's also possible to apply stress testing in Builder as part of the strategy development

process. Instead of using the performance obtained from back-testing the strategies on the

original data, the Monte Carlo results at 95% confidence from the stress tests can be used

when evolving the strategies. The top strategies in the population will be the ones with the

best Monte Carlo results, which will tend to drive the population towards robust strategies.

The downside is that if each Monte Carlo analysis is based on N samples or iterations, the

build process will take N times as long using this approach.

Along with out-of-sample testing and other methods discussed in this guide, stress testing

provides another tool to help identify robust trading strategies and avoid over-fitting. If

applied as part of the strategy building and/or evaluation process, stress testing may help

weed out strategies that are overly sensitive to changes in the trading environment, which

could help avoid losses and increase the likelihood of success.

94

Ideal Trades
Ideal trades are ones that can be identified in hindsight and are always "profitable"; the

entries and exits are chosen specifically to produce a desired trade result. In general, ideal

trades can be used to estimate the potential profit in the market, such as with Pardo's "perfect

profit" (Pardo, R. Design, Testing, and Optimization of Trading Systems, John Wiley & Sons,

Inc., New York, 1992), or they can be used as targets for strategy building.

The ideal trades in Builder are specifically intended to be used as targets for strategy building

and are generated automatically by the program based on simple specifications. To use the

ideal trades for strategy building, the trades generated by each strategy are compared to the

ideal trades to compute the Ideal Matches metric for measuring the degree of correspondence

between the two sets of trades. By building strategies that maximize the Ideal Matches

metric, the generated strategies will reproduce as many of the ideal trades as possible. This

simplifies the specification of build metrics while basing the build process on the market-

specific characteristics implicitly defined by the ideal trades.

Defining Ideal Trades for Matching

While there may be several different ways to define so-called ideal trades, the intent in

Builder is to define trades that would be desirable to duplicate in real trading. Accordingly,

the ideal trades are based on a specified maximum risk and a minimum profit. The risk is

defined as the largest open loss prior to the exit, which is also known as the maximum

adverse excursion (MAE). Both risks and profits can be defined adaptively, in terms of

multiples of the average true range, or fixed dollar amounts can be used. Trades are assumed

to be entered and exited at the bar's open.

The key to using ideal trades for matching is to define the trades so that they have a range of

bars for both entry and exit. If they were defined with only a single entry bar and a single exit

bar, the likelihood of getting matches would be substantially lower and the utility of the

matching metric would be questionable.

The process of identifying the ideal trades proceeds as follows:

1. Calculate the risk/MAE at bar i. If the MAE is below the specified risk limit, proceed to

the next step.

2. Calculate both the profit and risk/MAE on bar j = i + 1. If the profit is less than the

minimum and the MAE is less than the maximum, increment j and repeat this step. If the

profit is greater than or equal to the minimum and the MAE is less than the maximum, a

valid ideal trade has been found, so go to the next step. If the MAE is exceeded before

the minimum profit is reached, a valid ideal trade does not exist at bar i, so increment i

and return to step 1.

3. Try to extend the range of exit bars for the ideal trade found in the prior step. Increment j

and calculate the MAE. As long as the MAE is not exceeded, add bar j to the range of

exit bars for the ideal trade. If the MAE is exceeded, go to the next step.

4. Try to extend the range of entries for the ideal trade found above. At bar k = i - 1, repeat

the steps above. If a valid ideal trade is found at bar k, add this bar to the original trade's

entry bar range and add the exit bars to the original trade's exit bar range provided the

exit bar ranges overlap. Decrement k and repeat until a valid ideal trade cannot be found

or the exit bar ranges no longer overlap. Set k = i + 1 and repeat this step, incrementing

k instead of decrementing it at each step.

5. Set i to the bar following the end of the entry bar range for the current ideal trade and go

back to step 1.

95

This process applies to either long or short trades. When looking for both, if a long trade is

not found at bar i, the process is repeated for a short trade. By following this process, a set of

ideal trades is generated that includes a range of bars for both entry and exit. For each bar in

the entry bar range, there is at least one bar in the exit bar range that satisfies both the risk

and profit requirements, although there may be many such exit bars. In addition, there may

be exit bars where the profit requirement is met that are separated by exit bars that don't meet

the profit requirement, provided those bars don't exceed the MAE. This allows the ideal trade

to match a strategy-generated trade where the exit occurs later than at the first opportunity, as

long as the MAE is not exceeded. Also, by searching for the next ideal trade on the bar

following the last bar in the entry bar range for the current ideal trade, every bar is examined

as a possible entry bar for an ideal trade. This implies that if a strategy-generated trade meets

the profit and risk requirements, there is an ideal trade that matches it.

Figure 7.2 Ideal trade markers on a price chart. Ideal trades were defined as a minimum profit of

$1500 with a maximum risk of $500. Up and down-pointing solid, colored markers represent long

and short entry bar ranges, respectively, while down and up-pointing dotted-line markers represent

long and short exit bar ranges, respectively.

Examples of ideal trades are shown in Fig. 7.2 for daily bars of the E-mini S&P 500 futures.

The green horizontal bars with up-turned ends positioned below price bars represent the

entry locations of long ideal trades, and the red bars with down-turned ends positioned above

price bars represent the entry locations of short ideal trades. The black dotted lines represent

the exit locations; long exits are positioned above the price bars and are drawn with down-

turned ends, and short exits are positioned below the price bars with up-turned ends. Black

dotted exit lines drawn without a right-end mark indicate that the exit bars for the ideal trade

continue past the end of the line. This generally happens due to a sustained trend. Also notice

that whereas entry ranges never overlap, an entry range can overlap with the exit range of

one or more other ideal trades, and different exit ranges can overlap. These characteristics

enable maximum flexibility in matching the ideal trades to strategy-generated trades.

The Matching Process

Once the ideal trades have been identified, the matching process is straight-forward. A

strategy trade matches an ideal trade if the profit of the strategy trade is at least as great as

the specified minimum profit of the ideal trade, the MAE of the strategy trade is no greater

than the maximum MAE of the ideal trade, the entry bar of the strategy trade lies within the

96

range of entry bars for the ideal trade, and the exit bar of the strategy trade lies within the

range of exit bars for the ideal trade. Examples of strategy trades matching ideal trades are

shown in Fig. 7.3.

Figure 7.3 Ideal trade matches on daily bars of the E-mini Russell 2000 futures. The minimum profit

was set to $1000 with a maximum risk of $500.

To define the "Ideal Matches" metric, the number of matches is combined with the number

of strategy trades that don't match an ideal trade. To understand why both matches and non-

matches are important, consider two examples. In the first, suppose there are 500 ideal trades

and only 10 strategy trades. If all 10 strategy trades match an ideal trade, considering only

the strategy matches would imply 100% perfect matching, whereas only 2% of the 500 ideal

trades have been matched. In the second example, suppose there are 100 ideal trades but

1000 strategy trades. If all 100 ideal trades are matched by a strategy trade, considering only

the ideal trade matches would give the impression of perfect matching, whereas only 10% of

the 1000 strategy trades have been matched. Perfect matching can be defined as having the

number of matches equal to the number of ideal trades with no non-matching strategy trades.

To represent this, the following definition for the "Ideal Matches" metric is used in Builder:

 Ideal Matches = 100 * NM/[NI * (a * NN^2 + 1)]

where NM is the number of matches, NI is the number of ideal trades, NN is the number of

non-matching strategy trades, "a" is a constant, and "^" represents exponentiation (i.e., NN is

squared). This equation generates a metric that lies within the range 0 (no matches) to 100

(all ideal and strategy trades match). The term (a * NN^2 + 1) is designed to keep the

denominator relatively small for small values so that a small number of non-matching trades

doesn't penalize the metric too much. For example, with a = 0.0001 and NN = 100, (a *

NN^2 + 1) has the value 2. If, on the other hand, I had used the simpler term (NN + 1), 100

non-matching trades would result in division by 101. Also, the exponent means that for

increasing values of NN, the penalty is progressively larger, so a large number of non-

matching trades results in a very small Ideal Matches value.

Building with Ideal Matches

There are several different ways to use the Ideal Matches metric for building strategies in

Adaptrade Builder.

Ideal Matches as the Sole Metric. On daily bars of the E-mini S&P 500 futures from

9/4/2012 to 3/6/2020 using a minimum profit of $1500 with a maximum risk of $750, there

are 207 ideal trades in total. In an example build, this corresponded to 115, 37, and 55 ideal

trades on the training, test, and validation segments, respectively. As an example of using the

97

Ideal Matches metric by itself, a single build objective was chosen as the Ideal Matches

metric with no build conditions. This tended to generate strategies that had a similar number

of trades to the number of ideal trades. After a typical build over 100 generations, the number

of strategy trades in the top strategy was 90, 29, and 49, respectively, over the three

segments, or 168 trades over the entire date range. The Ideal Matches metric on the training

segment of the top five strategies ranged over several different builds from the high single

digits to about 25%.

Notably, the number of trades in strategies generated using this approach was relatively

uniform within the population and between populations from different builds. This was not

the case when building on the same data with the less market-specific objective of

maximizing net profit. In that case, it was common to see some top strategies with only a

handful of trades in the training segment while others had almost a thousand.

Subjectively, the best strategies were not the ones with the highest value of the Ideal Matches

metric. This may be because the ideal trades chosen to illustrate the concept were fixed in

size, rather than being adaptive to the market's volatility. As a result, there may have been

other trades that didn't fit the definition of "ideal trade" that would have worked better in

some cases. Forcing the strategies to match more ideal trades may have prevented it from

generating other, more favorable trades.

Ideal Matches with Build Conditions. Another approach is to try to improve upon using the

Ideal Matches metric by itself by adding build conditions. In the example above, when

conditions were added for the profit factor, percentage of wins, trade significance (i.e.,

statistical significance of the average trade), and correlation coefficient of the equity curve,

this tended to yield better results with more of the performance metrics in a desirable range,

as intended by the build conditions. At the same time, the Ideal Matches metric values did

not seem to decline for the top strategies, and the number of trades and average trade size

still appeared to be controlled by the goal of matching the ideal trades.

Ideal Matches with Build Conditions and Maximizing Net Profit. In the examples above,

the Ideal Matches metric had a value less than about 25% in most builds, implying that most

trades were not ideal trades. This was true even for the profitable trades. This suggests the

idea of adding Net Profit as a build objective (along with Ideal Matches) to more directly

influence the trades that don't match an ideal trade. In the example above, setting the relative

weight of the Ideal Matches metric to about 0.2 or 0.3 of the weight for Net Profit still

allowed the Ideal Matches metric to influence the results while producing better results

overall.

The primary effect and benefit of using the Ideal Matches metric is that it provides a way to

specify market-specific build conditions related to trade metrics, such as the average trade

size, number of trades, average bars in trades, and so on, without having to determine

appropriate values for the individual metrics. By specifying just two values, the minimum

profit and maximum risk, which can be verified visually on the price chart, the resulting ideal

trades provide targets for strategy building. Even though only a fraction of the ideal trades

may be matched by any strategy, the goal of matching them guides the build process to

strategies with metric values that generally reflect the ideal trades.

Compared to other methods that use ideal trades in strategy building, such as using the equity

curve or the metrics that correspond to ideal trades, the method available in Builder is more

direct in that it's based on matching the trades themselves. Accordingly, it seems to steer the

population of strategies towards ones with metrics representative of the ideal trades even in

cases with low match percentages.

98

The best way to use the Ideal Matches metric may be to combine it with a nonspecific build

objective, such as maximizing net profit, and several general build requirements, such as

ones based on profit factor, percentage of winning trades, trade significance, correlation

coefficient, etc. Conditions or requirements based on these types of metrics are relatively

easy to define compared to metrics that are more market-specific, such as the average trade

size, number of winners, and so on. For example, if a trader likes to see a profit factor of at

least 1.7 or at least 60% winners, these can be used as conditions. Additional information on

nonspecific metrics is available in the article Strategy Quality Metrics Improve Out-of-

Sample Results, available at adaptrade.com under the Newsletter link.

Additional information on ideal trades and their settings in Builder is available in the Price

Charts chapter, Creating and Using Price Charts.

Out-of-Sample Performance
Genetic Programming (GP) is a type of optimization, similar to but more generalized and

complex than the simple strategy input optimization that most systematic traders are

probably familiar with. When a strategy is developed based on GP, the optimization process

fits the strategy to the data used to develop it. The question is whether the strategy will

perform well on data not used in the development, such as in real-time trading. Data not used

in the development is referred to as out-of-sample data. Clearly, we want good performance

on out-of-sample data. This section discusses the factors that affect out-of-sample

performance and what can be done to improve it.

Poor out-of-sample performance can be due to several factors. In a program like Builder,

which uses a sophisticated search process to find the best strategies, the results are biased by

the fact that the search process selects the best results out of all strategies generated. This

introduces the so-called data mining bias. Builder includes a unique test of statistical

significance to detect this and determine if the strategies are in fact unduly biased in this

way. If they are, a strategy that appears to generate good results may be benefitting mostly

from good luck (technically, from random, sampling error), which suggests that it won't be

likely to hold up well out-of-sample. This test was discussed in Evaluation Options in the

Build Settings chapter.

Another factor that can degrade out-of-sample performance is over-fitting, which refers in

this case to the problem of optimizing a strategy so that it fits the training data well but

doesn't generalize well to the out-of-sample segment. Any part of the data that can be traded

profitably can be considered the signal, while everything else can be considered noise. Over-

fitting is fitting the noise, rather than the signal.

There are two general approaches to dealing with over-fitting. One approach is to detect

over-fitting after-the-fact and discard any strategies that are over-fit. The other is to take

steps to avoid developing over-fit strategies in the first place. The previous section discussed

using stress testing to avoid over-fitting by building based on the Monte Carlo results of

stress testing. It was also discussed how stress testing can be used after-the-fact to assess

strategies for over-fitting.

Another approach to avoid over-fitting is to use three data segments: training, test, and

validation. In Builder, the first two segments are utilized by the Build Failure Rules and

Build Termination Options on the GP Settings window of the Build menu. The training

segment comprises the data used to build the strategies. The second segment, known as the

test segment, is used to monitor the build process and minimize over-fitting. The validation

segment is not used to build the strategies. Validation data are reserved for out-of-sample

testing following strategy building. The results on the validation segment provide an

99

unbiased estimate of strategy performance because the validation data were not used in

building the strategies.

The Build Failure Rules and Build Termination Options help avoid over-fitting by allowing

you to define rules that stop or reset the build process when the results on the test segment

start to decline. If the performance on the training segment continues to improve as the build

process progresses, but the results on the test segment start to level off or decline, it suggests

that the strategies are being over-fit. In other words, they're fitting the data used to develop

them better but are not generalizing well to other (i.e., test) data. These rules can be used to

detect this situation and either reset the build or terminate it.

Another way to avoid over-fitting is to guide the build process towards better quality

strategies by targeting metrics related to over-fitting and general strategy quality. One factor

is the so-called number of degrees-of-freedom. The number of degrees-of-freedom, which is

equal to the number of trades minus the number of rules and conditions of the strategy, is

related to how tightly the strategy fits the data. Provided inputs are added for each parameter

in the strategy, the number of strategy inputs can be used as a proxy for the number of rules

and conditions. For example, if a strategy has 100 trades and 10 inputs, it has 90 degrees-of-

freedom. The more degrees-of-freedom, the less likely it is that the strategy will be over-fit

to the market and the more likely it is that it will have good out-of-sample performance.

The number of degrees-of-freedom can be increased during the build process by adding

requirements for the number of trades and/or the strategy complexity. All other things being

equal, adding a build condition for the number of trades will result in strategies with more

trades and therefore more degrees-of-freedom. Likewise, adding a build condition for the

complexity metric will result in strategies with fewer inputs, which will also increase the

number of degrees-of-freedom.

The degrees-of-freedom can also be targeted indirectly via the Trade Significance metric (not

to be confused with the statistical significance test discussed above). The Trade Significance

(or simply Significance) metric is based on the Student’s t test applied to the average trade.

The t test is based on the number of degrees-of-freedom but is a more complete measure of

strategy quality than the number of degrees-of-freedom alone. One way, then, to reduce the

likelihood of over-fitting is to use the significance metric to generate strategies that have a

high Significance, such as greater than 95%.

Another measure of strategy quality is consistent results across different periods. One way to

measure this is with the correlation coefficient of the equity curve, which measures how

closely the equity curve approximates a straight line. If the equity curve is a straight line, it

implies that the performance is uniform over all regions of the data. Obviously, this is

desirable if the goal is to achieve good performance over as many different types of market

conditions as possible. The correlation coefficient for the strategies generated by Builder can

be increased by adding this metric as a condition and requiring a high value, such as 0.95.

Another factor affecting strategy quality is the variety of market conditions in the training

segment. Generally speaking, it’s better to optimize over data that includes a wide variety of

market conditions, such as up trending and down trending markets, periods of consolidation,

high and low volatility, etc. The more variety in the training segment, the more likely it is

that the strategy will perform well on other data, including out-of-sample data and in real-

time trading. While this doesn't necessarily relate to over-fitting -- you could still fit the noise

in each of the different market conditions -- a strategy that is trained on a wide variety of

market conditions and is not over-fit has a better chance of generalizing well to new data

than a strategy that was trained on only one set of market conditions.

100

Unfortunately, there will be cases where even with good performance metrics, a wide variety

of market conditions in the training segment, and no evidence of over-fitting, the out-of-

sample performance will be poor. This can happen for several reasons. First, the strategy

might be under-fit. While over-fitting is probably more common, it's possible that the

strategy might not be complex enough to capture the underlying market dynamics. This

would usually show up as poor performance in the training segment, which would result in

rejected strategies. However, there may be cases where the market dynamics extend into the

out-of-sample segment and are not captured by the training data. An analogy would be fitting

a straight line to a scatter plot that appears to be linear based on the first half of the data but

can be seen to be curving upward when all the data are seen together. Secondly, the market

dynamics on which the strategy logic is based (i.e., the signal) may have changed in the out-

of-sample segment enough to negatively impact performance. This is sometimes due to a

fundamental change in the market, such as the switch from floor-based to electronic trading.

However, more subtle changes, often related to the trading patterns of market participants,

are also possible, particularly for shorter-term trading.

If this appears to be the problem, the solution may be as simple as rebuilding the strategy

with new trading logic. Another possible solution is to re-optimize the strategy inputs

without rebuilding the strategy, including the most recent data in the optimization. Then test

the new strategy inputs out-of-sample by tracking the performance in real-time. In most

cases, a strategy that has a large number of trades, a high significance value and good

performance on the training segment will continue to perform well for some period of time

post-optimization. The next question is how long it will continue to perform before requiring

re-optimization or rebuilding. This issue is discussed below in the section Post-Build Testing

and Optimization.

Build Time
The GP algorithm is very computationally intensive. There are several factors that can affect

the time it takes to build and evaluate a strategy:

• Length of the price data file. A file of 10 years of daily data for the EURUSD currency

is about 138k in size. One year of 5 min data for the E-mini S&P is ten times as large.

The build time is proportional to the file size, so a file that is 10 times as large will

generally take about 10 times as long to process.

• Population size and number of generations. These parameters determine how many

strategy simulations are performed. One simulation is performed for each member of the

population for each generation.

• Tree depth. This setting determines in part the complexity of the entry conditions for the

strategies. Strategies that are more complex take longer to evaluate.

• Long/short symmetry. If the short side is the mirror image of the long side, Builder can

save time both in building the strategy and evaluating it. Strategies in which the long and

short sides are different are more complex and take longer to build.

• Number of trades. Strategies with a large number of trades take longer to evaluate. One

factor that can result in an unusually large number of trades is not specifying adequate

trading costs. With zero or small trading costs, a large number of very short-term trades

with very small or even zero profit/loss values will not negatively impact the fitness. For

example, with zero trading costs, a top strategy could have thousands of trades that enter

and exit at the same price, resulting in zero profit/loss with no impact on the strategy's

fitness. To avoid this, always specify a reasonable value for the trading costs and/or

select the option to use the bid/ask spread to determine fills on the Evaluation menu.

• Hardware and software considerations. Obviously the build process will run faster on a

faster processor. The build algorithm is a parallel processing algorithm that takes

advantage of multi-core processors. The more cores the better. It’s also the case that if

multiple programs are running together on the same computer at the same time as

101

Builder, fewer processor cycles will be available for Builder, and the build process will

take longer.

Depending on these factors, the build process may take anywhere from several minutes for a

preliminary build to several hours or even days for a large price file. If the build process

seems to be taking too long, it can be cancelled and restarted at a later time. To restart the

build process later, make sure to save the current results before exiting the program by

selecting Save Project from the File menu. Upon opening the file, uncheck the Reset on

Build box (GP Settings, Build menu). This will instruct the program to initialize the

population using the saved strategies from the prior session. Builder saves the top number of

strategies specified on the GP Settings window. To restart the build process exactly where

you left off, the number of saved strategies should be set to the population size prior to the

initial build. That way, Builder will save the entire population for the last completed

generation.

Post-Build Testing and Optimization
As discussed above, genetic programming (GP) is an optimization process. As such, it’s

important to perform out-of-sample testing on any developed strategies prior to real-time

trading. If the Build Failure Rules and Build Termination Options are not used, the test

segment will be out-of-sample. However, if either the Build Failure Rules or Build

Termination Options are used, the test segment cannot be considered out-of-sample. In this

case, it's important to utilize the validation segment in Builder for out-of-sample testing. The

default settings on the Build Symbols window of 60/20/20 for the training/test/validation

percentages are usually reasonable.

To select the best strategy from the final population, consider sorting the results by the

fitness on the test segment. This can be done by selecting the test segment from the drop-

down menu on the Build Results table, then clicking on the fitness column so that the results

are sorted from highest to lowest fitness. Selecting the strategy with the highest fitness on the

test segment will minimize the so-called training bias (see, for example, "Is Your Account

Size Large Enough for Your Strategy?" under the Newsletter link at www.Adaptrade.com).

There can still be selection bias, however. That's why it's necessary to verify the results by

checking that they hold up on the validation segment.

Keep in mind that the most unbiased form of out-of-sample testing is real-time tracking, in

which you follow the strategy for some period of time following the optimization and record

the performance as new price data are generated in real time. This could either be done in

Builder by loading new price data, or you could track the strategy directly in the trading

platform.

Another approach that some traders may prefer is to load a different price series into Builder

and test the strategy on that file. This can easily be done by adding another market to the

table on the Evaluation Symbols window. After adding the new market, select the strategy to

evaluate and select Evaluate from the Evaluation menu. For example, you might want to

build a strategy for wheat futures then test it on corn futures. Similarly, you could build a

strategy on the SPY ETF then test the strategy on various large-cap stocks. Keep in mind,

however, that this approach is more demanding of your strategy and may not always produce

acceptable results. The suggestions in the previous section can be used to help generate more

robust strategies that may have a greater likelihood of performing well on multiple markets,

including, of course, building over multiple primary symbols.

In addition to out-of-sample testing, the strategies generated by Builder can be optimized in

the traditional way; i.e., parameter optimization. As noted above, an input has been added for

102

each parameter in the strategy. These inputs are assigned values during the GP process and

are modified by the mutation operator, but in some cases, further improvement may result

from optimizing these inputs separately. For example, this can be done in TradeStation using

the built-in genetic optimizer of TS 8.5 or later. To set the range for each input, refer to the

settings in the Parameter Ranges window on the Build menu in Builder. For example, if an

input represents a multiple of the average true range for an entry price, you can use the range

of values under “Price Difference Multiple, Entries” in the Parameter Ranges window.

Likewise, if an input is a look-back length for a price pattern, you can use the range of values

under “Lookback, Price Patterns”. As with GP, any results generated from optimizing the

strategy inputs should be tested out-of-sample.

The other important issue regarding post-build testing and optimization is monitoring the

strategy during real-time trading and re-optimizing or rebuilding if necessary. As discussed

in the section on out-of-sample performance, market dynamics can change in such a way that

the strategy logic may no longer work. This will tend to happen more frequently for

strategies that are optimized over shorter time periods. However, performance can start to

decline at any time for any strategy, regardless of its back-tested performance or how long it

has been used successfully in real time trading. This is simply one of the risks of trading.

To address this risk, the performance can be monitored over the most recent trade history and

compared to the long-term average performance of the strategy. This approach is sometimes

referred to as statistical process control, which is a method used in manufacturing to make

sure the manufacturing processes stay within prescribed error limits. In the context of

trading, you might, for example, calculate the percentage of winning trades for the most

recent 30 trades and compare this to the percentage for the entire trade history. If the

percentage for the most recent period deviates from the long-term average by more than two

or three standard deviations, the strategy can be rebuilt or re-optimized. Any performance

metric could be used for this calculation, including the average trade, profit factor, and so on.

If a strategy starts to show declining performance, it might be possible to re-optimize the

inputs in your trading platform rather than rebuilding in Builder. If that doesn’t work, a new

strategy can always be built in Builder.

Common Questions
In some cases, the results displayed by Builder don't match the results I get when I run

the strategy in my trading platform. What's wrong?

There are several possible explanations. One possibility is that the date ranges of the price

series are different between Builder and the trading platform. It's also important to set the

"Maximum number of bars study will reference" in TradeStation (Format Strategies,

Properties for All) to the MaxBarsBack value listed in the Build Results table. In

MultiCharts, the value is entered under Format Signal, Properties ("Maximum number of

bars study will reference"). This will insure that the calculations start on the correct bar. This

is not necessary in AmiBroker since the code itself contains the MaxBarsBack setting.

MetaTrader automatically starts the indicator calculations so that the first bar of trading is on

the first day you specify. This means you don't need to enter a "max bars back" value.

However, it also makes it difficult to align the starting date in Builder with that of

MetaTrader. Sometimes, the bar on which the calculations start can make a substantial

difference. For example, if trading starts two bars earlier in MetaTrader than in Builder and

each trade lasts exactly five bars, each trade could be starting and ending two bars earlier in

MetaTrader, which could significantly affect the results.

103

Trading costs can also be a factor. Note that Builder deducts the trading costs once per trade,

whereas TradeStation deducts costs once "per side". For example, if your trading costs are

set to $25 in Builder, they should be set to $12.50 in TradeStation.

If you're re-using a strategy name in the strategy editor by pasting the strategy code over the

code for an existing strategy, it will be necessary to reset the input values before running the

back-test. Otherwise, the trading platform may be using the prior strategy's input values with

the new strategy. In TradeStation, delete the strategy from the chart and re-insert it to reset

the input values. In MetaTrader 4, reset the input values by clicking the Expert properties

button on the Tester window and clicking the Reset button on the Inputs tab. In AmiBroker,

click the Parameters icon on the Analysis window and click "Reset all".

MetaTrader 4 applies a minimum price distance to determine if an order can be placed. If a

pending order (stop or limit) is too close to the market at the time it's placed, the order will

be rejected. This is based on the idea that there won't be sufficient time to place the order

before the market moves through the order price. Builder doesn't reject such orders, which

can sometimes cause a discrepancy in back-testing between Builder and MetaTrader 4.

Another source of difference in MetaTrader involves the accumulation/distribution indicator.

The values of this indicator depend on the bar on which the calculations start. In MetaTrader,

while you can specify the starting and ending dates for the strategy, the indicators are

evaluated starting at the beginning of the available data. This means that the

accumulation/distribution values may be very different in MetaTrader than in Builder.

In TradeStation, another possible source of difference is how Builder and TradeStation use

trading volume on intraday data. If your strategy uses volume in an indicator for either an

entry or exit condition and your price data is intraday data, TradeStation may be using only

the "up volume", rather than the total (up plus down) volume. There is an option on the Data

File Format window to "Set volume to sum of up-tick and down-tick volumes." Try

changing this option then re-evaluate the strategy using the Evaluate command on the

Evaluation menu.

For forex trading, one source of discrepancy is the so-called "roll over credit", which

TradeStation calculates on foreign exchange trades. This is currently outside the scope of

Builder. In most cases, these credits are small amounts that do not affect the overall results

substantially.

Also keep in mind that Builder does not look inside bars (what TradeStation refers to as

"look-inside back-bar testing"). If your strategies enter and exit on the same bar or have

multiple exit orders that could be triggered on the same bar, such as a target and a protective

stop, this can results in discrepancies. As a general rule, it's probably better to use more data

for a given number of trades during a given trading period rather than less. This suggests that

going to a smaller bar size with more bars per trade is preferable to having trades enter and

exit on the same bar or having the bar size be so large that both stops and targets could be

triggered on the same bar. Provided this is done, there will not be any ambiguity about which

order is triggered first, and the discrepancy associated with the lack of look-inside bar testing

can be avoided.

Even with all the settings correct, there may be differences. Oftentimes, these result from

rounding errors and other small differences that are unavoidable. For example, if an

oscillator is compared to a fixed value, such as 80.0, using the less-than-or-equal (<=)

operator, there may be a bar where the value calculates as exactly 80.0 in Builder but as

80.0000001 in TradeStation. This seemingly insignificant difference can result in a trade that

is not taken in TradeStation but is taken in Builder. This could then affect subsequent trades

104

because the presence or absence of a trade can either prevent or allow another trade to be

taken. This is particularly true when entries are taken at market, especially when the entry

condition is "true". Such strategies rely on the exit logic, so that if one trade is off by a bar,

the next trade will be delayed by one bar, and so on. In this way, a small calculation

difference can lead to entirely different results. One way to handle this possibility is to stress

test strategies after building them. Strategies that do poorly under stress testing may be too

"fragile" for real life trading.

When I tried to run a strategy in TradeStation, I got an error message "Tried to

reference more bars than allowed by current Max bars back setting." In MultiCharts,

the error is "Tried to reference back more bars than allowed by current MaxBarsBack

setting."

The max bars back (MaxBarsBack) setting in TradeStation and MultiCharts refers to the

number of bars required to start the calculations. You need to set this to the value listed in

Builder in the results table under MaxBarsBack. The same value is also listed in the

comment block at the top of the strategy code. In TradeStation, you enter the value under

"Maximum number of bars study will reference" in Format Strategies, Properties for All. In

MultiCharts, the value is entered under Format Signal, Properties ("Maximum number of

bars study will reference"). This will insure that the calculations start on the correct bar.

I selected the exit end-of-day order type, but my trades don't exit at the end of day in

real time trading. What can I do?

First, the exit end-of-day order type is only available in TradeStation and MultiCharts. For

other code types, the "Exit after" option on the Strategy Logic window should be used to exit

intraday strategies at the end of the day or at a specified time. For TradeStation and

MultiCharts, the "Exit end-of-day" order type on the Order Types window in Builder causes

the program to include the SetExitOnClose command in strategies. This command is mostly

for back-testing purposes. In real time trading, it causes a market order to be generated on the

close of the last bar of the current session. However, by the time the order is sent, the market

has already closed, so the order is not filled. A work-around technique that some traders use

is to define a custom session that ends a few minutes prior to the actual session close. Then

the SetExitOnClose command will have time to exit your position prior to the end of the

actual session. You just need to make sure to correctly set the session end time in Builder for

the custom session, and, of course, the chart in TradeStation/MultiCharts has to use the same

custom session as in Builder in order to avoid discrepancies between the results in Builder

and those in TradeStation/MultiCharts.

A simpler approach is to use the "Exit after" option on the Strategy Logic window. Set the

time to at least one bar prior to the end of the session. That will trigger an exit prior to the

end of the session.

I want my strategies to have smaller losses. How do I get tighter stops in Builder?

If the stops are too large, the easiest solution is to reduce the maximum stop size on the

Parameter Ranges window. There are separate parameter ranges for fixed size, percentage,

and price-based stops. You can also set a target for the Max Loss metric. For example, if you

want no more than 9 points loss on trades in the E-mini S&P, you can set a target for the

Max Loss metric of $450 (i.e., 9 points x $50 per point). Alternatively, you can try including

the Ave MAE (maximum adverse excursion) in the build goals. The Ave MAE is a measure

of the intra-trade drawdown. There is also a Max MAE metric (maximum value of the MAE

over all trades).

If the problem is that you're not getting protective stops in your strategies, you can include

any selected exit type in all strategies. To include a protective stop, just select the protective

stop in the "Include" column on the Order Types window.

105

Why do my trades exit past the time I set in the "Exit after" option?

The exit time option allows you to set an exit time for your trades. If, for example, you set

the time to 3:00 pm, the strategy logic will be modified so that exits take place after this time.

However, it's important to keep in mind that the time stamp on bars is typically the time the

bar closes. For example, if you're using 30 minute bars, a bar time of 3:30 pm means the bar

closes at 3:30. Since it's a 30 minute bar, that means it opens at 3:00 pm. The exit time option

causes a trade to exit on the next bar's open if the time of the current bar is greater than or

equal to the exit time. So if you've specified an exit time of 3:00 pm, the trade will exit on

the open of the 3:30 pm bar (assuming 30 minute bars). The exit time will be listed as 3:30

pm because that's the time stamp on the bar, but the actual time will be a moment after 3:00

pm, which corresponds to the open of the 3:30 pm bar.

Also keep in mind that a trading strategy can only trade the bars of price data it has. If you're

using 60 minute bars that end on even hours (e.g., 2:00 pm, 3:00 pm, 4:00 pm, etc.), and you

specify an exit time of 3:15 pm, your trades will not end at 3:15 pm because there's no bar

with that time. In this case, the trade would exit on the open of the 5:00 pm bar, which would

be a moment after 4:00 pm.

If your data has been exported from MetaTrader 4, the bar time is the time the bar opens.

However, the logic works the same way as described above, and the results should be the

same for the same exit-time value.

I specified no more than three entries per day but get four. Why?

The option to limit the number of entries per day uses the EntriesToday function in

EasyLanguage or the equivalent code for other languages. The strategy code checks to make

sure the current value is less than the specified limit before placing the orders. However, it

can still place two orders – one long and one short – if both entry conditions apply, either of

which or both may be filled, depending on the market. That means you could get up to two

entries if both are filled, which could result in as many as four entries for the day.

Why does Builder sometimes seem to replace my top population member during the

build process?

The program never replaces the top strategy in the population. However, after new strategies

are added, the top strategy may change, which means the top strategy from a prior generation

may no longer be the top strategy in the current generation. The strategy to replace at each

step is chosen as the least fit member among a small number of randomly chosen members.

The number of such members is given by the so-called tournament size, which can be

changed on the GP Settings window. To decrease the likelihood that one of the top strategies

might be replaced, you can increase the tournament size. The default size is 2. However,

increasing it to a high number is not recommended and may hurt the performance of the

program.

Why are most of my final strategies similar?

If many or all of your final strategies are similar, you probably need to reduce the number of

generations and/or utilize the rules under Build Termination Options on the GP Settings

window. After a number of generations, the results will often tend to converge, resulting in

similar strategies. This can also happen if insufficient variety is in the initial population. To

get more variety in the initial population, either increase the population size or make sure that

the build sets (indicator and order) have not been overly restricted by removing too many

items. It may also be possible to increase diversity in the final set of strategies by increasing

the mutation rate and decreasing the crossover rate. Also, consider using two or more

subpopulations.

106

How do you know when a strategy is broken and needs to be rebuilt or re-optimized?

Depending on the market, time frame, and other factors, it's always possible that a trading

strategy will stop working at some point and need to be rebuilt or re-optimized. Please see

the section Post-Build Testing and Optimization. One approach involves tracking the trailing

performance characteristics of the strategy and rebuilding or re-optimizing when the results

start to differ significantly from the long-term averages. A simpler approach is to track the

equity curve and look for deviations from straight-line performance. If the strategy needs to

be rebuilt, it's just as easy with Builder to create a new strategy as it was to develop the

original one.

One point to keep in mind: if you try to re-optimize a strategy's parameter values before the

strategy starts to underperform, there's no reason to think you'll get different results

(assuming it's already optimized) if you re-optimize over the same data. You can either re-

optimize over more recent data while dropping the earlier data from the date range or wait

until the strategy has been underperforming sufficiently that the optimization process is

likely to find better parameter values over the same data than those you previously found.

Does changing the settings in the middle of a build affect the build process?

No. Any changes made to the settings, such as build goals or strategy options, have no effect

on an ongoing build. However, if you stop the build then restart it, any changes you've made

will be picked up and used in the new build.

When I compile my MT4 strategy, I get warning messages about functions that have

been deleted from the file. Is there something wrong?

No. Those messages can safely be ignored. The include file for MetaTrader 4 contains

functions for all the different order types any strategy created by Builder might need. No

single strategy will use all the different order types, so the MT4 compiler removes the

functions for the order types that are not used. The warnings are simply telling you that those

functions have been removed from the compiled strategy code. The functions have not been

removed from the include file itself.

Why are some options not available when I select "AmiBroker" as the code type?

The AmiBroker Formula Language (AFL) makes it very easy to write simple strategies,

provided they're consistent with the underlying design of AFL. However, more complex

strategies can be very difficult, if not impossible, to construct. The degree of complexity

required by Builder-generated strategies makes it impractical to allow AFL strategies that

include both long and short trades in the same strategy. Of course, you can generate separate

populations for long-only and short-only strategies if you plan to trade both sides of the

market. Because strategies can only be long-only or short-only in AmiBroker-generated

Builder code, the option to "Wait for exit before entering new trades" is true by default and

would be inapplicable if unchecked.

When I compiled my strategy, it didn't recognize one of the functions in the Builder-

generated code. What happened?

Builder includes a number of functions and indicators that need to be installed into the

trading platforms in order for Builder-generated strategies to run properly. If these functions

are not installed, the strategies generated by the program will not compile or run. These

functions must be installed separately for each platform you intend to use, such as

TradeStation or NinjaTrader. Please refer to the installation instructions in the user's guide in

the Getting Started chapter.

When I try to start the program, it opens then immediately shuts down. How can I fix

this?

107

Most likely, there's something wrong with the project file the program is trying to open when

it starts up. The project file may have been corrupted or damaged for some reason. If you

know which project file it's trying to open -- the last one open when you closed the program -

- you can delete it or rename it. Otherwise, you should delete the registry entry for Builder in

the Windows registry, which tells Builder which file to open when it starts up. This can be

done using the Windows regedit program. Please refer to the user's guide (Getting Started,

Program Layout and Configuration, Deleting the Registry Entry) for details.

Tips and Hints
The best way to become proficient at using Adaptrade Builder is to spend some time using it

to build strategies. Don’t expect that each and every build process will result in a strategy

that meets your requirements. It’s more likely that after the first run, you’ll want to adjust

some of the metrics and build again. Nonetheless, you’ll soon find the combination of

settings that generates the performance results you want.

The following tips and hints for building strategies with Adaptrade Builder may help you

come up with better strategies in less time. Some of these suggestions were also mentioned in

previous chapters.

Good strategy results for small intraday time intervals, such as 1 min or tick bars, over

long time periods, such as several years, can be difficult to find and take multiple days to

build. A better approach may be to build over a shorter time period and be prepared to

rebuild the strategy every few months to keep up with changing market dynamics.

The option of removing indicators and/or order types from the build set is intended to

allow users with specific preferences for or against specific strategy elements to restrict the

build set to the desired elements. Removing too many items from the build set may reduce

the likelihood of finding viable strategies.

The complexity weight can be used to “break ties” among strategies that give the same

performance results with different numbers of inputs. Setting this weight to a relatively small

value can help to keep the entry conditions from getting too verbose.

Whether or not you use the Significance metric, a Significance value of at least 95% is

generally desirable. This implies adequate average trade size, low standard deviation of the

trades, and a sufficient number of trades.

A correlation coefficient of at least 0.9 will help ensure that the performance is fairly

uniform over the price history. Lower values often indicate extended flat or down periods.

If you'll be running the program overnight or while it’s unmonitored for an extended

period of time, consider using the "Performance Failure Rule" on the GP Settings window to

reset the build process after every N generations so that the program will keep working if it

doesn't find good results initially. For example, you could use the second build failure rule to

start over after every N generations if the average net profit on the test segment is less than

10000000. Because such a high net profit will never be reached, it will start over every N

generations. Used in conjunction with the Top Strategies conditions, you can set up the

program to save good strategies continuously. In this case, also consider using the option to

save the project file after each generation (Auto-Save option, Program Options, View menu)

to avoid losing your results in the case of a power outage, computer crash, or other

unexpected event.

108

The settings on the GP Settings window for Crossover Pct, Mutation Pct, Tree Depth,

and Tournament Size can be considered advanced settings. The default values usually

suffice. However, don’t hesitate to experiment with other values.

Limiting the number of entries per day can often improve results for intraday strategies

because it reduces the number of different market conditions that must be accommodated by

a single strategy.

To get a feel for how difficult it will be to find viable strategies for your market,

consider setting the number of generations to zero, and save the entire population. The GP

process will stop after the initial population is randomly generated. You can then sort the

results by net profit to see how many members of the initial population are profitable. The

more profitable results you see from these randomly-generated members, the more likely it is

that you’ll get good results from the build process.

To maximize the chance of finding viable strategies, it’s usually better to start with the

most general set of strategy options and narrow the options only after finding a good

solution. For example, start with the symmetry option unchecked (off), so that you can get

different entry conditions and order types for long and short trades. Provided that works, try

applying the symmetry option to simplify the logic if desired.

To find the simplest possible strategies, set the tree depth to zero. This will effectively

remove the entry conditions, so that the only entry logic is in the entry orders themselves.

When choosing the build metrics, keep in mind that some metrics are related to each

other. For example, the average trade size is related to the number of trades. If you use an

objective for the average trade, you’ll probably end up with fewer trades. Likewise, both

drawdown and correlation coefficient are related to the straightness of the equity curve.

Similarly, minimizing the average losing trade could tend to bias the results towards

strategies with a small average trade (i.e., both wins and losses are smaller) or towards

strategies with a higher profit factor.

The maximum adverse excursion (MAE) tells you how far trades go against you before

they exit. Minimizing the Ave MAE or Max MAE may result in tighter stops. This can be a

good build goal if you have trouble trading strategies that have large open losses, even if the

trades usually exit profitably.

When setting the build metrics, it’s usually best to start with a small number of metrics,

such as three or four. The default selections are often a good starting point. After a few

generations, review the results and add or remove metrics, change the weights, and add or

remove conditions in order to correct any shortcomings you see in the reported results. An

incremental approach usually works better than setting the build metrics once and letting the

build process run for an extended period of time without intervention.

Chapter 8
Ribbon Menu

File Menu

Figure 8.1. File menu commands.

The File menu is shown in Fig. 8.1. The file menu commands are listed below.

New Project Creates a new project file.

Open Project

Close Project

Opens an existing project file.

Closes an open project file.

Save Project Saves an opened project file using the same file

name.

Save Project As Saves an opened project file to a specified file name.

Save NinjaScript Strategy

to File

Save MT4 Strategy to File

Save to MSA File

Saves currently selected NinjaTrader strategy code

to a file.

Saves currently selected MetaTrader 4 strategy code

to a file.

Saves trades and settings for currently selected

strategy to a Market System Analyzer (MSA) file.

Properties Display file properties.

Options Use this command to customize the ribbon menu

and the Quick Access Toolbar.

Exit

Exits Builder.

110

The Recent Documents list shows the 15 most recently opened project files. These project files

can be opened by selecting them from the list.

If any command in the File menu is not applicable, the icon and associated text will be dimmed.

For example, if no project file is open, the Close command will be dimmed. In Fig. 8.1, the

commands for saving NinjaScript and MT4 strategies are dimmed because the selected strategy

in the open project file is in EasyLanguage code. Most of the File menu commands will be

dimmed while the build process is running.

New Project Command

Use this command to create a new project file in Builder. The new project will be blank, and

all input settings will be set to their default values. If a project file is currently open, you will

be prompted to save it if necessary before the new project file is initialized.

You can open an existing project file with the Open Project command.

Open Project Command

Use this command to open an existing project file. These documents have the file extension

.gpstrat; e.g., MyBuilderFile.gpstrat.

You can create new project files with the New Project command.

File Open Window

The following options allow you to specify which file to open:

File Name

Specifies the file you want to open. This field lists files with the extension you select in the

pull-down menu to the right of this field.

Files of Type

Specifies the type of file you want to open. Builder creates and opens files of type .gpstrat.

You can also select “All Files” in this box, but only files of type .gpstrat can be opened.

Close Project Command
Use this command to close the project file. When you close a project file, Builder prompts you to save

the document if it has any unsaved changes. After a project file is closed, it's necessary to open an

existing project or create a new project before any further project work can be done in the program.

Save Project Command

Use this command to save the active project to its current file name and directory. When you

save a document for the first time, Builder displays the Save As window so you can name

your project file. If you want to change the name and directory of an existing document before

you save it, choose the Save Project As command.

Save Project As Command

Use this command to save and name the active project. Builder displays the Save As window

so you can name your document.

To save a project with its existing name and directory, use the Save Project command.

File Save As Window

The following options allow you to specify the name and location of the file you are about to

save:

111

File Name

Specifies a file name to save a document with a different name. Builder adds the extension

you specify under Save As Type.

Save NinjaScript Strategy to File Command

Use this command to save the currently selected NinjaTrader strategy code to a .cs file. The

selected strategy must be in NinjaScript code format.

Save MT4 Strategy to File Command

Use this command to save the currently selected MetaTrader 4 strategy code to a .mq4 file.

The selected strategy must be in MetaTrader 4 (MQL4) code format.

Save to MSA File Command

Use this command to save the trades and settings for the currently selected strategy code to a

Market System Analyzer (MSA, extension .msa) file. Market System Analyzer (MSA) is

position sizing and money management software for trading. Builder will prompt you to enter

a name for the MSA file as well as a name for the text file to which the trades will be saved.

The resulting .msa file can be opened directly by MSA version 3.3 or higher and will include

all current Builder settings that are applicable to MSA. If more than one market was used in

the build process, the point value and trading costs stored in the MSA file will be the ones for

the currently selected market.

Properties Command

Use this command to display information about the currently open project file, including the

file size and path, created and modified dates, date of last build, and the list of price files

associated with the project, as in Fig. 8.2. The Builder File Version is the version of Builder

that was last used to save the project file, which can be opened with that version or later of

Adaptrade Builder. The Project Notes box allows you to enter notes describing the project.

Figure 8.2. File Properties window.

112

Options Command

Use this command to add, remove, or rearrange items on the ribbon menu and to add or

remove item from the Quick Access Toolbar (QAT). The QAT is the row of small icons in the

upper left-hand corner of the title bar of the main frame window, above the ribbon. It is

typically used to display icons for frequently used commands.

Exit Command

Use this command to end your Builder session. Builder prompts you to save the open

document if it has unsaved changes.

Build Menu
The Build menu is shown in Fig. 2.9 in Quick Start Steps in the Getting Started chapter. The

settings and options of the Build menu were discussed throughout the Build Settings chapter .

Evaluation Menu
The Evaluation menu is shown in Fig. 2.10 in Quick Start Steps in the Getting Started chapter.

The settings and options of the Evaluation menu were discussed in the Evaluation Options

section of the Build Settings chapter.

Position Sizing Menu
The Position Sizing menu is shown in Fig. 2.11 in Quick Start Steps in the Getting Started

chapter. The settings and options of the Position Sizing menu were discussed in the Position

Sizing Settings section of the Build Settings chapter.

View Menu

Figure 8.3. View menu of the ribbon.

The View menu, shown in Fig. 8.3, consists of three panels.

Windows Panel

The Welcome Screen button displays a window that contains information to help you get

started using the program. The Welcome screen is normally displayed when the program starts

up. Options on the Welcome screen include buttons to open example files, a button to open

the Quick Start Steps help topic, and tips for using the program. To prevent the screen from

being displayed when Builder starts up, click the box "Don't display this screen at startup".

Clicking any of the three buttons for Example Projects will open the corresponding project

(.gpstrat) file and display accompanying text in the text box. If Builder was installed in a

folder other than the default presented during installation, it will be necessary to select the

location of the example projects. By default, the example projects are stored in the Examples

folder in the installation folder for Builder. The default path is C:\Program Files\Adaptrade

Software\Adaptrade Builder x.x.x\Examples, where x.x.x is the version number (e.g., 3.0.0).

Clicking the View Next Tip button will randomly display one of approximately 35 tips for

using Builder.

113

Figure 8.4. The Welcome screen displays instructional information.

Figure 8.5. Program options are selected on the Program Options window.

The Program Options button opens the Program Options window, shown in Fig. 8.5, which

allows the user to select program options. Options selected on this window are stored in the

Windows registry and affect all project files.

There are currently five available program options. The first available option is the number of

concurrent parallel processes used while building strategies. The default value is the number

of available processor cores recognized by Builder. Set this to a lower number if you want to

free up processing power for other programs running concurrently with Builder. Set this to a

higher number if Builder has not recognized all the available cores on your computer, such as

sometimes occurs with hyperthreaded processors.

114

The second option allows you to choose the set of performance metrics used with new

projects. As explained in Build Metrics in the Build Settings chapter, the set of build metrics

can be changed for any open project by right-clicking on the results table. The default set of

build metrics, which is used for new projects, is selected here. Clicking the Change Metrics

button opens the Change Performance Metrics window, as shown in Fig. 5.4. After modifying

the list of selected metrics, click OK on the Program Options window to save the list in the

Windows registry. The updated list will be used the next time a new project is created from

the File menu.

The third option controls the length of the so-called time-out interval. This is the maximum

length of time the program will spend to evaluate a single strategy during building and during

the statistical significance test before terminating the process and displaying an error message.

The default value is 20 seconds. You can also specify the number of retry attempts before the

program will terminate the process. After an evaluation takes longer than the specified time-

out interval, the strategy will be abandoned, and a new one will be created. This will be

repeated for the maximum number of times specified here. If the program can't find a strategy

that evaluates in less than the time-out interval in no more attempts than specified, the process

(build process or significance test) will be stopped.

If it takes longer than 10 or 20 seconds to evaluate a strategy, there may be a problem with the

build settings. For example, there may be too many trades in the strategy. If a strategy has

hundreds of thousands of trades, it can sometimes take as long as a few minutes to evaluate.

This sometimes happens if the trading costs have been set to zero. In this case, a strategy will

not be penalized for a large number of trades with zero profit/loss. Other reasons for

exceeding the time-out interval include too much data or overly complex strategies. The time-

out interval can be used to screen out strategies that have too many trades or are too complex.

For example, if you set the time-out interval to five seconds, any strategy that takes longer

than this to evaluate will time-out and be replaced. See Usage Topics, Build Time, for more

on this topic.

The Auto-Save option, if selected, automatically saves the project (.gpstrat) file at each step

during the build process. The project file is saved following population initialization and after

each generation. The project file name must exist (i.e., the file must have been saved

previously). A message is displayed in the Messages window during building to indicate that

this option has been selected.

The Price File Folders option allows you to change where the program looks for price data

files. Whenever a price data file is added to the Markets Symbols table on either the Build

Symbols or Evaluation Symbols window, the path to the selected file is stored in the list

shown here. When Builder reads the price data file, it looks for the price data file in one of the

folders in the list. To view or modify this list, click the button "Add or Change Price File

Folders". This will open the window shown below in Fig. 8.6.

If Builder cannot find a price data file shown in the Markets Symbols table, either re-select the

file using the Symbol Properties window or select the file here using the Add Folder button.

To remove a folder from the list, select the folder and click the Delete Folder button. When

opening a price data file, Builder looks in the folders in the order they're listed in the Price

File Folders window. Use the Move Up and Move Dn buttons to change the order of the

folders if desired to put folders where your price data files are more commonly stored near the

top of the list.

115

Figure 8.6. The Price File Folders window lists the folders where Builder will look for price data files.

The Reset Layout button returns the layout of the user interface, including the size and

position of the various docking windows, to the default layout. Use this feature if the layout

becomes altered and you're unable to restore it using the approach discussed in Program

Layout and Configuration in the chapter Getting Started.

Show/Hide Panel

The Show/Hide panel displays panes and windows in the program that can be optionally

opened or closed. Aside from the Status Bar, discussed below, each of these windows has

been described elsewhere in the documentation. Click the check box to show or hide the

window. If the box is checked, the window will be shown. Unchecking the box hides the

window.

The status bar is displayed at the bottom of the main window. The left area of the status bar

describes actions of right-click (context or popup) menu items as you move the mouse over

them. On the right side is a Memory Usage bar, which shows the percentage of the computer's

total available memory that is currently in use. Move the mouse over the indicator bar to see

the numeric value.

Input Mode Panel

The Input Mode panel allows you to switch between mouse input and touch input. Click the

mouse icon for normal input via a computer mouse. To use Builder with a touch-screen

display, click the hand icon, which will expand the layout format of the ribbon to make it

easier to select elements on a touch-screen display.

Clipboard Menu

Figure 8.7. Clipboard menu of the ribbon.

The Clipboard menu, shown in Fig. 8.7, contains the following buttons to copy results for the

currently selected strategy to the clipboard:

116

Equity Curve Copy the equity curve as an image (bitmap) file to the

clipboard.

Strategy Code

Trade List

Copy the entire strategy code to the clipboard.

Copy the list of trades from the Trade List window to

the clipboard in tab-delimited format.

Performance Report

Build Report

Copy the performance report to the clipboard in plain-

text, tab-delimited format.

Copy the build report to the clipboard in plain-text, tab-

delimited format.

Ribbon Tab Buttons

Figure 8.8. Ribbon tab buttons.

The ribbon tab buttons, shown in Fig. 8.8, are small buttons located in the upper right-hand

corner of the ribbon. There are four ribbon tab buttons in Builder.

^ button Minimizes or maximizes the ribbon menu to

hide or show the contents of each menu.

Theme Allows you to choose from among different

user interface themes.

About Builder

Help Topics

Displays information about this application.

Offers you an index to topics on which you can

get help.

Theme

Use this command to change the style of the menus, toolbars, and other visual elements of the

user interface of the Builder program. To change the program style, select a theme from the

popup menu. Once the theme has been changed, it will be stored locally, and the program will

continue to use that theme until a new theme is selected.

About Builder

Use this command to display information about Adaptrade Builder, including the copyright

notice, version number, recognized number of computer cores, and recognized amount of

installed memory.

Help Topics

Use this command to display the table of contents for Help. From the table of contents, you

can open various topics for using Adaptrade Builder, look up topics in the index, and perform

word searches using Find. Press F1 at any time to open a help topic related to the selected

command or active window. The help system contains the complete contents of this user's

guide.

Appendix: Performance Metrics

The different performance metrics calculated by Builder are described below. These metrics

are used on the Build Metrics window and are reported in the Build Results table and in the

detailed Performance Report. The first name shown below for each metric is the label

displayed in the detailed Performance Report, followed by the abbreviation in parentheses,

which is used on the Build Metrics window and in the results table. Unless otherwise noted,

metrics are calculated from the closed trades only. The metrics are listed below in the order

in which they appear in the Performance Report.

Note: Any metric that depends on account equity values takes into account the external

equity curves included in the evaluation, if any. This includes average profit/loss and return

metrics and drawdown calculations.

Closed Trade Net Profit (Net Profit). The total net profit is the total profit (gross profit

minus gross loss) for all closed trades, both wins and losses, in the trading period.

Gross Profit. The sum of the winning trades.

Gross Loss. The sum of the losing trades.

Profit Factor (Prof Fact). Gross profit divided by the absolute value of gross loss. Profit

factors of 1.5 or more suggest a strong system.

Ratio L/S Net Profit (Ratio L/S Profit). Ratio of net profit for long trades to net profit for

short trades.

Open Trade Profit/Loss (Open Profit). Net profit or loss for all trades that are open at the

end of the trading period. There can be at most one open trade per market-system.

External Equity Curve Net Profit. Total net profit of all external equity curves over the

trading period. This item is not displayed if there are no external equity curves. Because the

external equity curve values are not dependent on the strategy results, there is no metric

associated with this item.

Total Net Profit (Total Net Profit). The sum of the closed trade net profit, open trade

profit/loss, and external equity curve net profit.

Trading Period. Time span of trading, as selected on the Build Symbols window.

Starting Account Equity. Value of account equity at the start of trading.

Highest Equity (Equity High). The highest value of account equity on an intra-bar basis over

the trading period, including any external equity curves.

Lowest Equity (Equity Low). The lowest value of account equity on an intra-bar basis over

the trading period, including any external equity curves.

Final Account Equity (Final Equity). Value of account equity at the end of the trading

period, including any external equity curves.

118

Return on Starting Equity (Account Return). Percentage change in account equity from the

starting account equity to the final account equity.

Number of Closed Trades (No. Trades). Total number of closed trades in the trading

period.

Number of Winning Trades (No. Wins). Total number of trades with a profit/loss greater

than zero.

Number of Losing Trades (No. Losses). Total number of trades with a profit/loss less than

or equal to zero.

Trades Not Taken (No. Skipped). Total number of trades with a position size of zero.

Percent Profitable (Pct Wins). The number of winning trades expressed as a percentage of

the number of trades with non-zero position size (i.e., excluding trades not taken).

Ratio L/S Number of Trades (Ratio L/S Trades). Ratio of the number of long trades to the

number of short trades, excluding trades not taken.

Trades Per Year. Average number of trades per year, including open trades.

Trades Per Month. Average number of trades per month, including open trades.

Trades Per Week. Average number of trades per week, including open trades.

Trades Per Day. Average number of trades per day, including open trades.

Max Position Size (Max Shares). Largest number of shares or contracts for any one trade.

Minimum Position Size (Min Shares). Smallest number of shares or contracts of any trade,

excluding trades with zero shares or contracts.

Average Position Size (Ave Shares). Average number of shares or contracts per trade,

excluding trades with zero shares or contracts.

Largest Winning Trade (Max Win). Largest winning trade, where the winners are expressed

in currency units (e.g., dollars).

Largest Winning Trade (%) (Max Win (%)). Largest winning trade, where each winner is

expressed as a percentage of account equity at the time the trade was taken.

Average Winning Trade (Ave Win). Average of the winning trades, where the winners are

expressed in currency units (e.g., dollars).

Average Winning Trade (%) (Ave Win (%)). Average of the winning trades, where each

winner is expressed as a percentage of account equity at the time the trade was taken.

Average Bars in Wins (Ave Bars Wins). Average number of bars in winning trades.

Average Length of Wins (Ave Length, Wins). Average duration of winning trades in days,

hours, minutes, seconds. In the Build Results tables and in the Build Metrics window, this is

displayed as the number of days.

119

Max Number Consecutive Wins (Max Consec Wins). Largest number of winning trades in

a row.

Average R-Multiple, Wins (Ave R-Mult, Wins). The R-multiple is the trade profit/loss

divided by the risk of the trade, including trading costs. See Tharp, Van K. “Trade Your Way

to Financial Freedom,” 2nd ed., McGraw-Hill, New York, 2007. This metric is the average of

the R-multiples for winning trades.

Largest Losing Trade (Max Loss). Largest losing trade, where the losses are expressed in

currency units (e.g. dollars).

Largest Losing Trade (%) (Max Loss (%)). Largest losing trade, where each loss is

expressed as a percentage of account equity at the time the trade was taken.

Average Losing Trade (Ave Loss). Average of the losing trades, where the losses are

expressed in currency units (e.g. dollars).

Average Losing Trade (%) (Ave Loss (%)). Average of the losing trades, where each loss is

expressed as a percentage of account equity at the time the trade was taken.

Average Bars in Losses (Ave Bars Loss). Average number of bars in losing trades.

Average Length of Losses (Ave Length, Losses). Average duration of losing trades in days,

hours, minutes, seconds. In the Build Results tables and in the Build Metrics window, this is

displayed as the number of days.

Max Number Consecutive Losses (Max Consec Losses). Largest number of losing trades in

a row.

Average R-Multiple, Losses (Ave R-Mult, Losses). The R-multiple is the trade profit/loss

divided by the risk of the trade, including trading costs. See Tharp, Van K. “Trade Your Way

to Financial Freedom,” 2nd ed., McGraw-Hill, New York, 2007. This metric is the average of

the R-multiples for losing trades.

Average Trade (Expectation, Ave Trade). Sum of all trades, wins and losses, divided by

the total number of trades, excluding trades with zero position size. When choosing the build

metrics, keep in mind that the average trade is related to the number of trades. Setting a

weight value for this metric will tend to result in strategies with a higher average trade and

fewer trades.

Average Trade (%) (Ave Trade (%)). Average of all trades, where each trade is expressed

as a percentage of account equity at the time the trade was taken.

Trade Standard Deviation (Trade Std Dev). Standard deviation of the trades, where the

trades are expressed in currency units (e.g. dollars). The standard deviation is a measure of

variability or dispersion. 68% of normally distributed values are within one standard deviation

of the average. 99.7% are within three standard deviations of the average.

Trade Standard Deviation (%) (Trade Std Dev (%)). Standard deviation of the trades,

where each trade is expressed as a percentage of account equity at the time the trade was

taken.

120

Average Bars in Trades (Ave Bars). Average number of bars in all trades, both wins and

losses. Consider setting a condition and/or objective for this metric if you want to limit the

length of trades in the generated strategies.

Average Length of Trades (Ave Trade Length). Average duration of trades in days, hours,

minutes, seconds for all closed trades, both wins and losses. In the Build Results tables and

in the Build Metrics window, this is displayed as the number of days.

Min Bars in Trades (Min Bars). Minimum number of bars in all closed trades, both wins

and losses. Consider setting a condition for this metric if you want to ensure the length of

trades in the generated strategies is above a specified value.

Max Bars in Trades (Max Bars). Maximum number of bars in all trades, both wins and

losses, including open trades. Consider setting a condition and/or objective for this metric if

you want to limit the length of trades in the generated strategies.

Percent Time in Market (Time in Market (%)). Percentage of bars with a non-flat

position, including open trades and excluding the MaxBarsBack number of bars.

Total Net Profit per Share (Total PL Per Share). Total net profit or loss per share,

including open-trade profit/loss and deducting costs for closed trades.

Adjusted Net Profit per Share (Adjusted Total PL Per Share). Total Net Profit per Share

divided by Percent Time in Market (expressed as a fraction). For example, if the total net

profit per share is $100 and the time in market is 20%, the Adjusted Net Profit per Share

would be $500.

Buy&Hold Profit per Share (Buy&Hold PL Per Share). Total net profit or loss per share

assuming buying and holding throughout the period, excluding trading costs and excluding

the MaxBarsBack number of bars.

Net Profit/Buy&Hold Ratio (PL/Buy&Hold Ratio). Ratio of the Total Net Profit per Share

to the Buy&Hold Profit per Share.

Adjusted Net Profit/Buy&Hold Ratio (Adjusted PL/Buy&Hold Ratio). Ratio of the

Adjusted Net Profit per Share to the Buy&Hold Profit per Share.

Average MAE (Ave MAE). Average maximum adverse excursion. The maximum adverse

excursion (MAE) is the worst-case intra-trade drawdown; i.e., the largest loss on an open

trade. The Ave MAE is the average of the MAE’s over all trades. Consider setting a target

and/or weight value for this metric if you want to limit intra-trade drawdown in the generated

strategies.

Average MAE (%) (Ave MAE (%)). Average maximum adverse excursion (MAE), where

the adverse excursion is expressed as a percentage of equity. The Ave MAE (%) is the

average of the percentage MAE’s over all trades. Consider setting a target and/or weight

value for this metric if you want to limit intra-trade drawdown in the generated strategies.

Maximum MAE (Max MAE). Maximum value of the maximum adverse excursion (MAE).

The Max MAE is the largest of the MAE’s over all trades. Consider setting a target and/or

weight value for this metric if you want to limit intra-trade drawdown in the generated

strategies.

121

Maximum MAE (%) (Max MAE (%)). Maximum value of the maximum adverse

excursion (MAE) in percent of equity. The Max MAE (%) is the largest of the percentage

MAE’s over all trades. Consider setting a target and/or weight value for this metric if you

want to limit intra-trade drawdown in the generated strategies.

Average MFE (Ave MFE). Average maximum favorable excursion. The maximum

favorable excursion (MFE) is the largest open-trade profit if one exists; i.e., the largest profit

during the trade provided it has an open profit. The Ave MFE is the average of the MFE’s

over all trades, including open trades.

Average MFE (%) (Ave MFE (%)). Average maximum favorable excursion (MFE), where

the favorable excursion is expressed as a percentage of equity. The Ave MFE (%) is the

average of the percentage MFE’s over all trades, including open trades.

Minimum MFE (Min MFE). Minimum value of the maximum favorable excursion (MFE).

The Min MFE is the smallest of the MFE’s over all closed trades.

Minimum MFE (%) (Min MFE (%)). Minimum value of the maximum favorable

excursion (MFE) in percent of equity. The Min MFE (%) is the smallest of the percentage

MFE’s over all closed trades.

Maximum MFE (Max MFE). Maximum value of the maximum favorable excursion

(MFE). The Max MFE is the largest of the MFE’s over all trades, including open trades.

Maximum MFE (%) (Max MFE (%)). Maximum value of the maximum favorable

excursion (MFE) in percent of equity. The Max MFE (%) is the largest of the percentage

MFE’s over all trades, including open trades.

Win/Loss Ratio. Ratio of the average win to the absolute value of the average loss.

Win/Loss Ratio (%). Ratio of average winning trade to average losing trade, where each

trade is expressed as a percentage of account equity at the time the trade was taken.

Return/Drawdown Ratio (Ret/DD Ratio). Ratio of the percentage account return to the

worst-case percentage drawdown.

Profit/Drawdown Ratio (PL/DD Ratio). Ratio of the Total Net Profit to the Worst Case

Drawdown. Both the net profit and drawdown are expressed in currency units (e.g., dollars).

Sharpe Ratio. Average monthly return minus the risk-free interest rate, all divided by the

standard deviation of the monthly returns. The risk-free interest rate is assumed to be zero.

This is a classic measure of risk-adjusted return. Higher values are better.

Sortino Ratio Average monthly return minus the target return, all divided by the so-called

downside deviation. The downside deviation is similar to the standard deviation except that

positive deviations are set to zero, whereas in the standard deviation, both positive and

negative deviations are included. The Sortino ratio is an alternative to the Sharpe ratio and is

sometimes preferred because it doesn't penalize positive returns that exceed the target value.

In Builder, the target rate of return is set to zero. The Sortino ratio is generally higher than the

Sharpe ratio.

MAR Ratio Average annual compounded rate of return divided by the maximum historical

percentage drawdown. The MAR ratio is often used to evaluate and compare hedge funds and

122

commodity trading advisors (CTAs). MAR ratios between 0.5 and 1.0 over long histories are

generally considered excellent.

DoF Ratio. Degrees-of-freedom ratio. Number of closed trades divided by the product of 30

times the Complexity (number of strategy inputs). The DoF Ratio is based on a rule-of-thumb

that says the number of trades should be at least 30 times the number of strategy inputs to

avoid over-fitting; see, for example, "Be Your Own Hedge Fund", John Ehlers, Ric Way,

Technical Analysis of Stocks & Commodities, Jan 2017, p. 16. Ratios over 1.0 are desirable.

Correlation Coefficient (Corr Coeff). Correlation coefficient of the equity curve. Also

known as the Pearson's r formula. The correlation coefficient varies from -1 to +1, with

values close to +1 indicating a straight, upward sloping curve. Values above 0.9 indicate a

fairly straight equity curve and therefore less variation in returns over different periods. If

position sizing is applied such that larger positions are taken as the account equity grows

(antimartingale position sizing), then the correlation coefficient is applied to the logarithm of

the equity curve. Calculated from the detailed (bar-to-bar) equity curve, which includes

external equity curves.

Trade Significance (Trade Sig). Student's t-test applied to the average trade. This can be

used as a measure of strategy quality. It takes into account the statistical properties of the

distribution of trades and the number of degrees-of-freedom of the trading strategy. The

number of degrees-of-freedom is the number of trades minus the number of inputs to the

strategy. The more degrees-of-freedom, the better. A significance level of 95% or greater is

generally desirable. Please refer to Evaluation Options in the Build Settings chapter for a

discussion of the difference between this metric and the statistical significance test available

on the Evaluation menu.

Complexity. In Builder, strategy complexity is defined as the number of strategy inputs.

Builder includes an input for each adjustable parameter used in an entry rule, entry order, or

exit order. The complexity is incremented by 2 to account for position sizing (1 for the

method and 1 for the parameter value). The total number of inputs is a measure of the

complexity of the system. Lower complexity implies a greater number of degrees-of-freedom

and a lower likelihood of over-fitting.

In many cases, after some number of generations, the top results will tend to converge so that

several strategies with different number of inputs will produce similar performance results.

Setting the weight for complexity to a small value can be a way to “break ties” among these

otherwise similar strategies based on the number of inputs. For example, you may find that

the top 10 strategies have similar performance results but several of them have extra inputs.

If the complexity is part of the fitness function, the strategies with the fewest inputs will be

ranked higher.

Average Risk (Ave Risk). Average risk for all trades. The risk is the amount per contract or

share that would be lost if the money management (protective) stop were hit, including trading

costs.

Average Risk (%) (Ave Risk (%)). Average risk where the risk (see Ave Risk, above) is

expressed as a percentage of account equity at the time the trade is taken.

Average R-Multiple (Ave R-Mult, Expectancy). The R-multiple is the trade profit/loss

divided by the risk of the trade, including trading costs. See Tharp, Van K. “Trade Your Way

to Financial Freedom,” 2nd ed., McGraw-Hill, New York, 2007. This metric is the average of

the R-multiples for all trades, both wins and losses. Tharp refers to this as the expectancy.

123

R-Mulitple Standard Deviation (R-Mult Std Dev). Standard deviation of R-multiples over

all trades, both wins and losses.

Total R (Total R-Mult). Total R-multiple. Sum of the R-multiples over all trades, both wins

and losses. This is essentially the risk-normalized net profit.

Van Tharp SQN. SQN
®

 is Van Tharp's System Quality Number; see for example, Tharp,

Van K. "Van Tharp's Definitive Guide to Position Sizing," International Institute of Trading

Mastery, Inc., North Carolina, 2008, p. 28. This metric is calculated as the Average R-

Multiple divided by the R-Multiple Standard Deviation multiplied by the square root of the

number of closed trades.

Note: For all R-Multiple calculations, for any trade for which the trade risk is undefined, the

risk it taken as the average loss. The average loss is calculated over all segments, including

both long and short trades.

Average Leverage (Ave Leverage). Average value of leverage over all positions. Leverage is

defined as the position value divided by the account equity.

Maximum Leverage (Max Leverage). Largest value of leverage over all positions. Leverage

is defined as the position value divided by the account equity.

Risk of Ruin. Probability of account depletion. See Vince, Ralph. "Portfolio Management

Formulas," John Wiley & Sons, New York, 1990, p. 136, equation R3. The equation for risk

of ruin assumes (1) unequal wins and losses, (2) a fixed number of contracts or shares per

trade, and (3) ruin is defined as 100% account depletion.

Kelly f. The Kelly fraction (f) is typically used to calculate position size. However, here it's

used as a measure of strategy quality. Expressed as a percentage, Kelly fractions greater than

roughly 20% can be considered higher quality strategies. Please note: When setting a metric

condition for Kelly f, it should be entered as a fraction even though it's displayed as a

percentage.

Ideal Matches. The percentage correspondence between the set of ideal trades and the

strategy trades. A metric value of 100 implies the same number of ideal trades as strategy

trades and that each strategy trade matches an ideal trade. Note that for metric values other

than 0 or 100, the value does not necessarily imply the percentage of trades (either strategy or

ideal) that match one another. See Usage Topics, Ideal Trades for more information.

Average Entry Efficiency (Ave Entry Efficiency). Average efficiency of trade entries. For a

long trade, the entry efficiency is calculated as: (maximum trade price - entry price) /

(maximum trade price - minimum trade price), where the maximum and minimum trade

prices are, respectively, the highest and lowest prices during the trade. For a short trade, the

numerator is replaced by (entry price - minimum trade price). The Average Entry Efficiency is

the average of the entry efficiencies over all closed trades. See Leo J. Zamansky, David C.

Stendahl, "Evaluating System Efficiency", Technical Analysis of Stocks & Commodities, Oct

1997. Expressed as a percentage, the entry efficiency lies in the range of 0% to 100%.

Average Exit Efficiency (Ave Exit Efficiency). Average efficiency of trade exits. For a long

trade, the exit efficiency is calculated as: (exit price - minimum trade price) / (maximum trade

price - minimum trade price). For a short trade, the numerator is replaced by (maximum trade

price - exit price). The Average Exit Efficiency is the average of the exit efficiencies over all

closed trades. Expressed as a percentage, the exit efficiency lies in the range of 0% to 100%.

124

Average Total Efficiency (Ave Total Efficiency). For a long trade, the total efficiency is

calculated as: (exit price - entry price) / (maximum trade price - minimum trade price). For a

short trade, the numerator is replaced by (entry price - exit price). The Average Total

Efficiency is the average of the total efficiencies over all closed trades. Note: Average Total

Efficiency = Average Entry Efficiency + Average Exit Efficiency - 1. This implies that if the

sum of the entry and exit efficiencies is less than 1 (i.e., 100%), the total efficiency will be

negative.

Average Annual Profit/loss (Ave Annual P/L). Average of all yearly profits (losses),

including partial years.

Ave Annual Compounded Return (Ave Annual Return). Average annual rate of return

assuming annual compounding.

Average Monthly Profit/loss (Ave Monthly P/L). Average of all monthly profits (losses),

including partial months.

Ave Monthly Compounded Return (Ave Monthly Return). Average monthly rate of return

assuming monthly compounding.

Average Weekly Profit/loss (Ave Weekly P/L). Average of all weekly profits (losses),

including partial weeks.

Ave Weekly Compounded Return (Ave Weekly Return). Average weekly rate of return

assuming weekly compounding.

Average Daily Profit/loss (Ave Daily P/L). Average of all daily profits (losses).

Ave Daily Compounded Return (Ave Daily Return). Average daily rate of return assuming

daily compounding.

In Builder, drawdown is defined as a decline from the highest prior peak in intra-bar equity,

including external equity curves, if any. The drawdown is measured from the highest prior

peak to the lowest intra-bar equity value. Because Builder does not have access to intra-bar

price points other than the open, high, low, and close, the order of the high and low prices is

assumed based on the bar shape. This assumption can affect the intra-bar equity and

drawdown calculations, which are therefore approximate on an intra-bar basis.

Number of Drawdowns (No. Drawdowns). This is the total number of drawdowns over the

trading period.

Average Drawdown (Ave Drawdown). Average value of the drawdowns expressed in

currency units (e.g., dollars).

Average Drawdown (%) (Ave Drawdown (%)). Average value of the drawdowns expressed

as percentage declines from the prior highest peak in equity.

Average Length of Drawdowns (Ave Length, Drawdowns). Average duration of

drawdowns in days, hours, minutes, and/or seconds. In the Build Results tables and in the

Build Metrics window, this is displayed as the number of days.

Average Trades in Drawdowns (Ave Trades, Drawdowns). Average number of trades from

the start of a drawdown until the first trade that makes a new equity high.

125

Worst-Case Drawdown (Drawdown). Largest drawdown, where the drawdowns are

expressed in currency units (e.g., dollars).

Date at Trough (Date, Max Drawdown). The date at the lowest equity point during the

worst-case drawdown.

Length of Drawdown (Length, Max Drawdown). Duration of worst-case drawdown, from

the start of the drawdown to the trade that makes a new equity high. In the Build Results

tables and in the Build Metrics window, this is displayed as the number of days.

Trades in Drawdown (Trades, Max Drawdown). The number of trades from the start of the

worst-case drawdown until the trade the makes a new equity high.

Return on Maximum Drawdown (Return on DD). Total net profit divided by the worst-

case drawdown, expressed as a percentage.

Worst-Case Drawdown (%) (Max Drawdown (%)). Largest value of the drawdowns

expressed as percentage declines from the prior highest peak in equity.

Date at Trough (Date, Max % Drawdown). The date of the trade at the lowest equity point

during the worst-case percentage drawdown.

Length of Drawdown (Length, Max % Drawdown). Duration of worst-case percentage

drawdown, from the start of the drawdown to the trade that makes a new equity high. In the

Build Results tables and in the Build Metrics window, this is displayed as the number of days.

Trades in Drawdown (Trades, Max % Drawdown). The number of trades from the start of

the worst-case percentage drawdown until the trade that makes a new equity high.

Longest Drawdown. Duration of longest drawdown, from the first trade in the drawdown to

the trade that makes a new equity high. In the Build Results tables and in the Build Metrics

window, this is displayed as the number of days.

Start of Drawdown (Start, Longest Drawdown). Date at the start of the longest drawdown.

End of Drawdown (End, Longest Drawdown). Date at the end of the longest drawdown.

Percent of Equity (% of Equity, Longest Drawdown). Depth of longest drawdown,

expressed as a percentage decline from the prior equity peak.

Longest Flat Period (Max Flat Period). Duration of longest period with no change in

equity. In the Build Results tables and in the Build Metrics window, this is displayed as the

number of days.

Appendix: Technical Indicators

Adaptrade Builder currently includes the indicators described below, which are also listed in Table 1

in Chapter 1. Subsequent versions of Builder may include other indictors as well. Most indicators

include one or more inputs, such as the averaging length for a moving average. The values of these

inputs are chosen by Builder during the build process from the range of values specified on the

Parameter Ranges window.

Simple moving average
Simple moving average of price over past the most recent N bars, where N is an input. The simple

moving average adds up the price over the past N bars and divides by N.

Exponential moving average
Exponential moving average (XMA) of price. The XMA is an exponentially weighted average of

price. As additional prices are added, their contribution decreases exponentially as (1 - alpha)^N,

where alpha = 2/(1 + N). Because more recent prices are weighted more heavily, the XMA is

considered to be more responsive to price changes than the simple moving average.

Weighted moving average
Weighted moving average of price. The weighted average assigns more weight to recent prices. The

weight value decreases by 1 starting with the current bar. Because more recent prices are weighted

more heavily, the weighted average is considered to be more responsive to price changes than the

simple moving average.

Triangular moving average1,2
Triangular moving average of price. The triangular moving average is the simple moving average of

the simple moving average of price, where the length of the simple moving averages is one-half the

specified length of the triangular moving average. Because the triangular moving average is a double-

smoothed simple moving average, it weights the middle portion of the look-back period most heavily.

Adaptive variable moving average (Adapt Variable MA)
This is an extension of Tushar Chande VIDYA indicator, which is essentially an exponential moving

average in which the smoothing constant (alpha) adapts to market volatility or trend strength. In

Chande's version, the effective period of the moving average decreases with the trend strength so that

highly trending markets have a short moving average period and sideways or choppy markets have a

long period moving average.

This version adds an extra input, TrendParam, which can be used to change the relationship between

trend and moving average period. Positive values of TrendParam give the same relationship as in

Chande's version, where a TrendParam of 1 is similar to VIDYA. Negative values of TrendParam

reverse the relationship, so that the period increases with the trend strength and decreases with flat or

trendless markets. A TrendParam of zero is a regular exponential moving average with no dependence

on trend. Reasonable values of TrendParam are between roughly -5 and +5.

Zero-lag trend
Moving average of price based on John Ehlers' ITrend or InstTrend indicator in Cybernetic Analysis

for Stocks and Futures, John Wiley & Sons, Inc, New Jersey, 2004, pp. 16, 24. According to Dr.

Ehlers, this indicator has essentially zero lag for price frequencies within the range of interest to most

traders.

127

Adaptive zero-lag trend (Adapt Zero-Lag Trend)
This is an extension of the zero-lag trend indicator, which is based on John Ehlers' ITrend or

InstTrend indicator in Cybernetic Analysis for Stocks and Futures, John Wiley & Sons, Inc, New

Jersey, 2004, pp. 16, 24.

In this version, the smoothing constant (alpha) adapts to market volatility or trend strength, depending

on the input TrendParam, which defines the relationship between trend and moving average period.

Positive values of TrendParam give a short moving average period during highly trending markets

and a long period moving average during sideways or choppy markets. Negative values of

TrendParam reverse the relationship, so that the period increases with the trend strength and decreases

with flat or trendless markets. A TrendParam of zero gives a period equal to Length (i.e., independent

of trend strength). The efficiency ratio is used as a measure of trend strength. Reasonable values of

TrendParam are between roughly -5 and +5.

Moving average convergence divergence (MACD)
Moving average convergence divergence indicator. The MACD is calculated as the difference

between two exponential moving averages of price.

Triple exponential moving average (TRIX)1
The triple exponential moving average (TRIX) indicator starts by taking the natural logarithm of

price, which is then smoothed by applying the exponential moving average three times. The TRIX is

calculated as the difference between successive values of the triply-smoothed result multiplied by a

normalizing factor of 10000. The TRIX acts as an oscillator with values typically ranging from -100

to +100.

Momentum
Momentum is an oscillator calculated as the difference between the current price and the price N bars

ago, where N is an input. Positive values indicate that prices are rising, whereas negative values

indicator that prices are falling.

Rate of change (ROC)1
ROC is an oscillator calculated as the ratio of the current price to the price N bars ago, subtracted

from 1 and multiplied by 100. Positive values indicate that prices are rising, whereas negative values

indicator that prices are falling.

Fast K stochastic1,2
The Fast K stochastic is a price oscillator scaled to the range 0 to 100. It’s calculated as the difference

between the bar’s close and the lowest low, all divided by the difference between the highest high and

the lowest low. High values are generally considered to represent so-called over-bought conditions,

whereas low values are generally considered to represent so-called over-sold conditions.

Fast D stochastic
The Fast D stochastic is a price oscillator scaled to the range 0 to 100. It’s calculated as a 3-period

exponential moving average of the Fast K stochastic. High values are generally considered to

represent so-called over-bought conditions, whereas low values are generally considered to represent

so-called over-sold conditions.

Slow D stochastic
The Slow D stochastic is a price oscillator scaled to the range 0 to 100. It’s calculated as a 3-period

exponential moving average of the Fast D stochastic, in which the exponential moving average uses a

smoothing factor of 1/N, rather than the value 2/(1 + N) of the normal XMA. High values are

generally considered to represent so-called over-bought conditions, whereas low values are generally

considered to represent so-called over-sold conditions.

128

Relative strength indicator (RSI)
The RSI is a momentum oscillator that indicates the strength of the market within a range of 0 to 100.

The calculation is based on the ratio of up price changes to down price changes. High values are

generally considered to represent so-called over-bought conditions, whereas low values are generally

considered to represent so-called over-sold conditions.

RocketRSI
John Ehlers' RocketRSI indicator calculates a smoothed version of an RSI scaled to [-1, +1] then

applies the Fisher transform to convert the values to standard deviations. As with the standard RSI,

high values are generally considered to represent so-called over-bought conditions, whereas low

values are generally considered to represent so-called over-sold conditions. Reference: John Ehlers,

"RocketRSI - A Solid Propellant For Your Rocket Science Trading", Technical Analysis of Stocks &

Commodities, May 2018, V36:6 (8 - 12).

Inverse Fisher RSI
Inverse Fisher transform of the RSI indicator. The inverse Fisher transform provides sharper turning

points for the RSI. The price values are smoothed with a 4-bar weighted moving average before

applying the RSI. Indicator values lie between -1 and +1.

Inverse Fisher cycle
Inverse Fisher transform of John Ehlers' Stochastic Cyber Cycle indicator from Cybernetic Analysis

for Stocks and Futures, John Wiley & Sons, Inc, New Jersey, 2004, p. 75. The Cyber Cycle is an

oscillator derived from the cyclic component of price. After computing the stochastic cyber cycle and

scaling it to -5 to +5, the inverse Fisher transform is taken to provide sharper turning points. Indicator

values lie between -1 and +1.

Adaptive inverse Fisher RSI (Adapt Inv Fisher RSI)
This is an extension of the inverse Fisher RSI indicator, which applies the inverse Fisher transform to

the RSI function in order to provide sharper turning points in the RSI. In this version, the smoothing

constant (alpha) adapts to market volatility or trend strength, depending on the input TrendParam,

which defines the relationship between trend and moving average period. Positive values of

TrendParam give a short moving average period during highly trending markets and a long period

moving average during sideways or choppy markets. Negative values of TrendParam reverse the

relationship, so that the period increases with the trend strength and decreases with flat or trendless

markets. A TrendParam of zero gives a period equal to Length (i.e., independent of trend strength).

The efficiency ratio is used as a measure of trend strength. Reasonable values of TrendParam are

between roughly -5 and +5. Indicator values lie between -1 and +1.

Adaptive inverse Fisher cycle (Adapt Inv Fisher Cycle)
This is an extension of the inverse Fisher cycle indicator, which is based on John Ehlers' Stochastic

Cyber Cycle indicator from Cybernetic Analysis for Stocks and Futures, John Wiley & Sons, Inc,

New Jersey, 2004, p. 75. The Cyber Cycle is an oscillator derived from the cyclic component of price.

In this version, the smoothing constant (alpha) adapts to market volatility or trend strength, depending

on the input TrendParam, which defines the relationship between trend and moving average period.

Positive values of TrendParam give a short moving average period during highly trending markets

and a long period moving average during sideways or choppy markets. Negative values of

TrendParam reverse the relationship, so that the period increases with the trend strength and decreases

with flat or trendless markets. A TrendParam of zero gives a period equal to Length (i.e., independent

of trend strength). The efficiency ratio is used as a measure of trend strength. Reasonable values of

TrendParam are between roughly -5 and +5. Indicator values lie between -1 and +1.

Commodity channel index (CCI)
The commodity channel index (CCI) is an oscillator calculated as the deviation of the average price,

(H+L+C)/3, divided by the average deviation of the average price. The ratio is adjusted by a factor

that helps keep most values within the range -200 to +200.

129

Directional indicator (DI+/DI-)
DI+ is the positive directional indicator, whereas DI- is the negative directional indicator. DI+

indicates the presence of an up trend, whereas DI- indicates the presence of a down trend.

Directional movement index (DMI)1,2
The DMI indicates the strength of the price trend. The DMI is calculated as the absolute value of the

difference between DI+ and DI- divided by the sum of DI+ and DI-, multiplied by 100.

Average directional index(ADX)
The ADX indicates the strength of the price trend. The ADX is calculated as an exponential moving

average of the DMI.

True range (TR)
The TR is the difference between the true high (highest of the current bar’s high and the prior close)

and the true low (lowest of the current bar’s low and the prior close). The TR is intended to more

accurately represent the bar’s range than the high minus the low when the prior close is outside of the

current bar’s range.

Average true range (ATR)
The ATR is the simple moving average of the true range over the past N bars, where N is an input.

Standard deviation
The standard deviation is the population (as opposed to sample) standard deviation of price over the

past N bars, where N is an input. The standard deviation is a type of price difference and can be

compared to other price differences within Builder.

Ulcer index
The Ulcer index calculates the average percentage drawdown in price, providing a general measure of

downside risk in the market. See https://www.investopedia.com/terms/u/ulcerindex.asp.

Bollinger band
The Bollinger band is the average price plus a multiple of the standard deviation of price. If the

number of standard deviations is positive, the result is an upper band. If the number of standard

deviations is negative, the result is a lower band. The upper and lower bands are traditionally used to

indicate a range of "normal" price movement.

Keltner channel1
The Keltner channel is the average price plus a multiple of the average true range. As with Bollinger

bands, positive and negative multiples are used to produce upper and lower bands of the Keltner

channel.

Lowest
The lowest price over the past N bars, where N is an input. Because the Lowest function returns a

price, it is used in Builder where a price value is required, such as in the calculation of stop and target

prices.

Highest
The highest price over the past N bars, where N is an input. Because the Highest function returns a

price, it is used in Builder where a price value is required, such as in the calculation of stop and target

prices.

Volume
The volume is the number of shares or contracts traded. For tick data, Builder uses the sum of the up

and down tick volumes. Builder uses volume in several ways: the volume on the current bar, the

130

volume N bars ago, the moving average or exponential moving average of volume, and the highest or

lowest volume over the past N bars. Any of these volume values may be compared to any other.

Accumulation/distribution
The Accumulation/distribution line is a volume oscillator, calculated by accumulating a portion of the

volume of each bar. The amount of volume added at each bar is equal to the difference between the

close and the open divided by the range. The use of this indicator in MetaTrader 4 strategies is not

recommended because its value depends strongly on the starting bar, which cannot be controlled in

MetaTrader. As a result, it's likely that different values for the indicator will be found in Builder than

in MetaTrader 4.

Chaiken oscillator1
The Chaiken oscillator is the difference between two exponential moving averages of the

accumulation distribution line.

Crosses Above/Below1
The crosses above indicator returns “true” if the first input is above the second input on the current

bar and below it on the prior bar. If the two inputs are equal on the prior bar, the indicator looks back

up to the maximum look-back length to determine if the first input was below the second. If not, the

indicator returns “false”. The crosses below indicator works analogously to “crosses above” to return

“true” if the first input crosses below the second input on the current bar and returns “false”

otherwise. The crosses above/below indicators can be used anywhere that inequality operators (>, <,

<=, >=) apply, including with moving averages, stochastics, RSI, MACD, momentum, and so on.

Price patterns
A price pattern in Builder is defined as the comparison between two prices, where the price can any of

the following: simple price (O, H, L, C), look-back price (O[N], H[N], L[N], C[N]), a day price

(OpenD(0), HighD(0), LowD(0), CloseD(1)), or any other selected indicator that returns price, such

as highest, lowest, and moving averages. The comparison between the two prices may be <, <=, >, or

>=. Builder may construct any number of price patterns, depending on the tree depth and the other

indicators selected as part of the build process.

Consecutive bars up (AS_ConsecBarsUp)
This indicator calculates the number of consecutive up prices, in which the "price" input can be any

valid price, including any function that returns a price. If the price is lower, the count is reset. If the

price is the same as the prior bar, the count is unchanged.

Consecutive bars down (AS_ConsecBarsDn)
This indicator calculates the number of consecutive down prices, in which the "price" input can be

any valid price, including any function that returns a price. If the price is higher, the count is reset. If

the price is the same as the prior bar, the count is unchanged.

Congestion count (AS_CongestCount)
The congestion count returns the number of consecutive bars where there is at least one price in

common among all bars. High numbers indicate a "congested" or range-bound market.

Typical price

Average of high, low, and close; i.e., Typical price = (H + L + C)/3.

Floor trader pivots (AS_PivotS, AS_PivotR)

Floor trader pivots consist of three levels of support and three levels of resistance. With CP (central

pivot) defined as the Typical Price of the prior bar, the floor trader pivots are defined as follows:

Support, level 1: 2 * CP - High[1]

Support, level 2: CP - (High[1] - Low[1])

131

Support, level 3: CP - 2 * (High[1] - Low[1])

Resistance, level 1: 2 * CP - Low[1]

Resistance, level 2: CP + High[1] - Low[1]

Resistance, level 3: CP + 2 * (High[1] - Low[1])

in which High[1] and Low[1] are the high and low price, respectively, on the prior bar.

Day of week
The day-of-week indicator returns an integer value from 0 to 6 to represent Sunday through Saturday,

respectively.

Time of day
The time-of-day indicator returns the time of the price bar N bars ago, where N is an input. Typically,

the time of a price bar is the time at which the bar closes.

Absolute value
The absolute value function is used when computing the difference between prices. Normally, when

using the price difference in a stop or target, the absolute value is applied to ensure that the price

difference is a non-negative number. You can exclude this function from the build set to remove this

restriction.

1Indicator not available for MetaTrader 4 code. 2Indicator not available for AmiBroker code.

Appendix: Code Conventions

The strategy code generated by Builder uses various naming conventions for inputs, variables, and

order type labels. Unless otherwise noted, the same naming conventions apply to all code types

available in Builder.

The strategy code naming conventions for input variables are shown below.

N : integer or number, typically an indicator look-back length (e.g., N1, NATR).

X : floating point value (e.g., X1, X2, etc.).

En or Ent : entry (e.g., EntFr, ATRFrEn).

Ex : exit (e.g., TimeEx, NBarEx1).

Fr : fraction or multiple (e.g., EntFr).

Targ : target exit (e.g., TargFr).

MM : money management (protective) stop (e.g., MMFr).

StartEquity: starting equity value for position sizing calculations.

PSParam : position sizing parameter value, such a fixed fraction, delta (fixed ratio), percent of

equity, etc.

RoundPS : true/false variable. True means round position size to nearest RoundTo increment.

RoundTo : value to round position size to if RoundPS is true; ignored if RoundPS is false.

SizeLimit : maximum allowable number of shares or contracts per trade.

As an example, consider the following code from the input section of a generated EasyLanguage

strategy, with comments added to explain each input:

NBarEn1 (60), // Number of bars, entry

NBarEn2 (14), // Number of bars, entry

NBarEn3 (5), // Number of bars, entry

EntFr (2.6909), // Entry fraction of price difference or average true range (ATR)

NATR (30), // Look-back length for ATR

TargFr (1.7681), // Target fraction; fraction/multiple of ATR

MMFr (1.51), // Money management stop fraction; fraction/multiple of ATR

N1 (27), // Indicator look-back length

N2 (59), // Indicator look-back length

N3 (27), // Indicator look-back length

N4 (59), // Indicator look-back length

N5 (61), // Indicator look-back length

X1 (10.0000), // Indicator parameter (floating point) value

NATR (79), // Look-back length of ATR

ATRFrEn (2.8858), // Fraction/multiple of ATR for entry

TimeEx (1015), // Exit time

StartEquity (100000.00), // Starting account equity; for position sizing calculations

PSParam (28.39), // Position sizing parameter value; e.g., percent of equity

RoundPS (true), // Round position size to nearest RoundTo

RoundTo (1), // Round position sizing to nearest 1

SizeLimit (100); // Limit position size to 100 shares or contracts

Strategy code generated by Builder also includes labels for the entry and exit orders. In TradeStation,

these labels are listed in the Trade List and appear on the chart next to each entry and exit. The order

labels added by Builder are shown below.

EnStop-L : Entry stop order

EnLimit-L : Limit entry order

133

EnMark-L : Market entry order

ExMark-L : Market exit order

ExTime-L : Exit-at-time order

ExNBars-L : Exit at N bars from entry order

ExStop-L : Money management (protective) stop exit order

ExTrail-L : Trailing stop exit order

ExTmRnge-L : Exit based on time range option (only for strategies built prior to version 1.3.0.0)

ExTarg-L : Target exit order

The "L" at the end of each label indicates that the order is for a long trade. Order labels for short

trades end in "S".

Variables for Entry and Exit Conditions

The entry and exit conditions in Builder can be quite complex and may consist of multiple variables

and multiple logical condition statements. Variables for numeric quantities, such as indicators, start

with "Var" and end with "L" for long conditions or "S" for short-side conditions, followed by a

number. Examples include VarL1, VarL2, VarS1, VarS2, etc.

Variables for logical conditions, which involve logical or inequality operators, follow the same

convention as numeric variables except that they begin with "Cond". Examples include CondL1,

CondL2, CondS1, CondS2, etc. An example showing how these variables are used is provided in

Chapter 1, Entry and Exit Conditions.

The entry and exit conditions themselves are assigned to variables EntCondL, EntCondS, ExCondL,

and ExCondS for, respectively, long and short entry conditions and long and short exit conditions.

Index

AmiBroker 1, 2, 7, 12, 23, 34, 35, 86, 102, 103,

106, 131

artificial intelligence ... 2

Average Drawdown .. 124

Average Losing Trade 119

Average Number of Shares/Contracts 118

Average Number of Trades in Drawdowns 124

average trade ... 107

Average Trade ... 119

Average Winning Trade 118

back-test 34, 35, 73, 86, 90, 91, 93, 103

build goals ... 4, 30, 108

Build Progress window 80

build set 4, 15, 68, 107, 131

Build Symbols window 24, 27, 45, 49

charting ... 2, 23, 24

complexity................................... 69, 100, 107, 122

correlation coefficient 107

crossover ... 3, 5, 7

Custom Indicators ... 43

data mining.. 2, 75, 98

data mining bias .. 2, 98

data series 8, 27, 45, 47, 50, 51, 52

Data Window .. 26

degrees-of-freedom 2, 122

delimiter .. 38, 41

docking windows ... 80

EasyLanguage ...iii, iv

equity curve symbol 40, 51, 87

Equity Curve Symbol .. 38

error messages ... 81

ETFs .. 2

Evaluate command 53, 59, 67, 71, 73, 87

Evaluation Symbols window................... 24, 45, 49

Expert Advisor .. 34, 86

external equity curve 36, 38, 40, 41, 46, 49, 53, 87,

117, 122

file properties .. 109, 111

Final Account Equity .. 117

fitness .. 2, 3, 4, 5, 30, 122

forex .. 2

futures ... 2

generations 2, 3, 5, 100, 108, 122

genetic programming 2, 4, 15, 30, 68

Gross Loss ... 117

Gross Profit ... 117

Highest Closed Trade Equity 117

ideal trades 56, 57, 67, 94, 95, 96, 97, 98, 123

indicators 1, 2, 3, 4, 6, 68, 107, 126, 130

Input Data .. 80

inputs ... 107, 122

in-sample ... 2

installation ... 21

Largest Losing Trade... 119

Largest Winning Trade 118

Long/short symmetry .. 100

Lowest Closed Trade Equity 117

main chart window 117, 124

market dynamics ... 107

Market Symbols table 27, 28, 38, 49, 51, 52, 53,

55, 57, 70, 71, 73, 74, 83, 87

Market System Analyzer (MSA) 89

Max Number Consecutive Losses 119

Max Number Consecutive Wins 119

Max Number of Shares/Contracts 118

MaxBarsBack 34, 35, 86, 102, 104

maximum adverse excursion 108, 120, 121

MetaTrader 4 .. 1, 8, 22, 26, 34, 38, 70, 85, 86, 103,

105, 109, 111, 130

Minimum Number of Shares/Contracts 118

Monte Carlo 67, 68, 83, 84, 90, 92, 93

MultiCharts 1, 2, 6, 26, 34, 35, 38, 43, 44, 86, 102,

104

multi-core processors .. 100

mutation ... 3, 108

neural network 1, 2, 5, 12, 13, 14, 22, 71

NinjaScript .. 86, 111

NinjaTrader 1, 2, 12, 22, 26, 38, 86

noise .. 2, 61, 98, 99

Number of Closed Trade Drawdowns 124

Number of Losing Trades 118

number of trades .. 107

Number of Trades in Drawdown 125

Number of Winning Trades 118

135

optimal bar size ... 71

out-of-sample .. 2, 4, 90

over-fit 63, 81, 90, 91, 93, 98, 99

over-fitting 2, 61, 90, 91, 93, 98, 99, 100, 122

panes ... 25, 80

performance metrics 5, 30, 117

population 1, 2, 3, 4, 5, 7, 81, 85, 87, 88, 100, 101,

108

position sizing 2, 33, 76, 77, 78, 79, 89, 90, 111,

122, 132

price chart 24, 26, 33, 37, 43, 47, 52, 55, 56, 57, 59

price data ... 3, 100

primary symbol ... 50, 51

processor cores .. 113

registry .. 25, 113, 114

results table ... 5

Return on Starting Equity 118

ribbon 23, 24, 26, 31, 59, 60, 109, 112, 115, 116

robust strategy ... 90

robustness .. 90

rules ... 2, 3

sampling error ... 98

saved strategies ... 25, 101

secondary symbol .. 50

Semantic rules ... 8

Sharpe Ratio .. 121

signal ... 2, 3, 61, 98, 100

statistical inference ... 2

strategy code .. 25, 80, 85

strategy quality 75, 99, 122, 123

stress testing 67, 83, 84, 90, 91, 93

symbol library 24, 36, 37, 45, 51, 52, 55

Syntactic rules ... 8

test segment 5, 29, 61, 62, 63, 65, 80, 81, 99

Trade Standard Deviation 119

TradeStation iii, iv, 1, 2, 6, 9, 22, 26, 34, 35, 37,

41, 43, 48, 70, 86, 102, 103, 104, 132

trading logic .. 3

Trading Orders 2, 57, 58, 59

trading platform 2, 35, 57, 69, 76, 86, 101, 102,

103

training 2, 13, 62, 65, 80, 81, 83, 98, 99, 100

tree structure .. 5, 6

TS 2000i .. 26

under-fit ... 100

validation segment 2, 5, 29, 53

viable strategies 69, 107, 108

Win/Loss Ratio .. 121

Worst-case Drawdown 125

